Skip to main content

New Realizations of Efficient and Secure Private Set Intersection Protocols Preserving Fairness

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2016 (ICISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10157))

Included in the following conference series:

Abstract

Private Set Intersection (PSI) is a useful cryptographic primitive for developing practical privacy preserving techniques for Big Data. PSI allows entities to securely extract intersection of the large data sets they own, without revealing any other crucial information for their input sets. Fairness is a critical issue for both mutual Private Set Intersection \((\mathsf{mPSI})\) and its cardinality variant, namely mutual Private Set Intersection Cardinality (\(\mathsf{mPSI}\)-CA). Achieving fairness over prime order groups with linear complexity in malicious model remains an interesting challenge for both \(\mathsf{mPSI}\) and \(\mathsf{mPSI}\)-CA. None of the prior works achieve all the aforementioned properties together. We address these issues using an off-line semi-trusted third party, called arbiter. Arbiter is semi-trusted in the sense that he cannot get access to the private information of the parties but follow the protocol honestly. In this work, we propose a construction of fair and efficient \(\mathsf{mPSI}\) with linear communication and computation overheads using prime order groups. Our \(\mathsf{mPSI}\) employs (Distributed) ElGamal encryption and the verifiable encryption of Cramer-Shoup. A concrete security analysis is provided against malicious parties under Decisional Diffie-Hellman (DDH) assumption. We further extend our \(\mathsf{mPSI}\) to \(\mathsf{mPSI}\)-CA retaining all the security properties of \(\mathsf{mPSI}\). On a more positive note, our \(\mathsf{mPSI}\)-CA is the first in its kind with linear complexity preserving fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 86–97. ACM (2003)

    Google Scholar 

  2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4_28

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)

    Google Scholar 

  4. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

    Chapter  Google Scholar 

  5. Brandt, F.: Efficient cryptographic protocol design based on distributed El Gamal encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg (2006). doi:10.1007/11734727_5

    Chapter  Google Scholar 

  6. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). doi:10.1007/BFb0052252

    Chapter  Google Scholar 

  8. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical report, Citeseer (1997)

    Google Scholar 

  9. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4_7

    Chapter  Google Scholar 

  10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

    Chapter  Google Scholar 

  11. Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_13

    Chapter  Google Scholar 

  12. Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  13. Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14577-3_13

    Chapter  Google Scholar 

  14. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30921-2_4

    Chapter  Google Scholar 

  15. Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection protocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 343–359. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15943-0_21

    Google Scholar 

  16. Debnath, S.K., Dutta, R.: Efficient private set intersection cardinality in the presence of malicious adversaries. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 326–339. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26059-4_18

    Google Scholar 

  17. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23318-5_12

    Chapter  Google Scholar 

  18. Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear complexity. Secur. Commun. Netw. 9(11), 1589–1612 (2016). doi:10.1002/sec.1450

    Article  Google Scholar 

  19. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 128–144. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6_9

    Chapter  Google Scholar 

  20. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 789–800. ACM (2013)

    Google Scholar 

  21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_2

    Chapter  Google Scholar 

  22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_12

    Google Scholar 

  23. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  25. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88(1), 172–188 (2005)

    Article  Google Scholar 

  26. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_4

    Chapter  Google Scholar 

  27. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8_10

    Chapter  Google Scholar 

  28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_19

    Chapter  Google Scholar 

  29. Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006). doi:10.1007/11957454_16

    Chapter  Google Scholar 

  30. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS (2012)

    Google Scholar 

  31. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_34

    Chapter  Google Scholar 

  32. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4_26

    Chapter  Google Scholar 

  33. Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear complexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27890-7_18

    Chapter  Google Scholar 

  34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15

    Chapter  Google Scholar 

  35. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 515–530 (2015)

    Google Scholar 

  36. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 797–812 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Debnath, S.K., Dutta, R. (2017). New Realizations of Efficient and Secure Private Set Intersection Protocols Preserving Fairness. In: Hong, S., Park, J. (eds) Information Security and Cryptology – ICISC 2016. ICISC 2016. Lecture Notes in Computer Science(), vol 10157. Springer, Cham. https://doi.org/10.1007/978-3-319-53177-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53177-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53176-2

  • Online ISBN: 978-3-319-53177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics