Skip to main content

Sulfur-Based Speleogenesis in the Cumberland Plateau, USA

  • Chapter
  • First Online:
Hypogene Karst Regions and Caves of the World

Part of the book series: Cave and Karst Systems of the World ((CAKASYWO))

Abstract

By any measure, both in the classical (Crawford in groundwater as a geomorphic agent. Allen and Unwin, Boston, pp 294–338, 1984; White in geomorphology and hydrology of karst terrains. Oxford University Press, New York, 1988; Sasowsky and White in Water Resour Res 30(12):3523–3530, 1994) and the present framework (Anthony and Granger in J Cave Karst Stud 66(2):46–55, 2004; Simpson and Florea in Caves and karst of America. National Speleological Society, Huntsville, pp 70–79, 2009), the karst landscapes of the Cumberland Plateau (western margin of the Appalachian Basin, eastern USA) are epigenic in nature. Discrete meteoric recharge is conveyed through sinking streams, sinkholes, and an epikarst reservoir into an integrated conduit system and toward topographically lower springs (Florea in J Hydrol 489:201–213, 2013a). The purpose of this brief manuscript is not to redefine that context, but to summarize a suite of data (Florea in investigations into the potential for hypogene speleogenesis in the Cumberland Plateau of southeast Kentucky, U.S.A. Brno, Czeck Republic, pp 356–361, 2013b; Florea in Acta Carsologica 42(2):277–289, 2013c; Florea in Earth Surf Proc Land, 2015) that suggest that geochemical reactions involving sulfur associated with shallow petroleum reservoirs may have played a role in a polygenetic evolution of some Cumberland Plateau caves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony DM, Granger DE (2004) A late tertiary origin for multilevel caves along the western escarpment of the Cumberland Plateau, Tennessee and Kentucky, established by cosmogenic 26Al and 10Be. J Cave Karst Stud 66(2):46–55

    Google Scholar 

  • Anthony DM, Granger DE (2007) A new chronology for the age of Appalachian erosional surfaces determined by cosmogenic nuclides in cave sediments. Earth Surf Proc Land 32:874–887

    Article  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate–silicate cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 284:641–683

    Article  Google Scholar 

  • Brucker RW, Hess J, White WB (1972) Role of vertical shafts in the movement of ground water in carbonate aquifers. Ground Water 10(6):5–13

    Article  Google Scholar 

  • Crawford NC (1984) Karst landform development along the Cumberland Plateau Escarpment of Tennessee. In: LeFleur RG (ed) Groundwater as a geomorphic agent. Allen and Unwin, Boston, MA, pp 294–338

    Google Scholar 

  • Curl RL (1974) Deducing flow velocity in cave conduits from scallops. Natl Speleol Soc Bull 36(2):1–5

    Google Scholar 

  • Engel AS, Engel SA (2009) A field guide for the karst of Carter Caves State Resort Park and the surrounding area, Northeastern Kentucky. In: Engel AS, Engel SA (eds) Field guide to cave and karst lands of the United States, Karst Waters Institute Special Publication 15, pp 154–171

    Google Scholar 

  • Ettensohn FR, Rice CR, Dever GR Jr, Chesnut DR (1984) Slade and paragon formations; New stratigraphic nomenclature for Mississippian rocks along the Cumberland Escarpment in Kentucky. US Geological Survey Bulletin 1605-B. US Geological Survey, Reston, VA

    Google Scholar 

  • Florea LJ (2013a) Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers. J Hydrol 489:201–213. doi:10.1016/j.jhydrol.2013.03.008

    Article  Google Scholar 

  • Florea LJ (2013b) Investigations into the potential for hypogene speleogenesis in the Cumberland Plateau of southeast Kentucky, U.S.A. In: Proceedings of the 16th international congress of speleology, Brno, Czeck Republic, pp 356–361

    Google Scholar 

  • Florea LJ (2013c) Isotopes of carbon in a karst aquifer of the Cumberland Plateau of Kentucky, USA. Acta Carsologica 42(2):277–289

    Google Scholar 

  • Florea LJ (2015) Carbon flux and landscape evolution in epigenic karst aquifers modeled from geochemical mass balance. Earth Surf Proc Land. doi:10.1002/esp.3709

    Google Scholar 

  • Florea LJ, Vacher HL (2011) Communication and forestructures at the geological intersection of caves and subsurface water flow—hermeneutics and parochialism. Earth Sci Hist 30(1):85–105

    Article  Google Scholar 

  • Florea LJ, Stinson CL, Weaver E, Lawhon N, Wynn JG (2011) Finding holes in a theory or finding a theory in holes—the potential role of hypogene speleogenesis for caves of the Cumberland Plateau in southeastern Kentucky. Geol Soc Am Abstr Programs 43(2):19

    Google Scholar 

  • Ford DC, Ewers RO (1978) The development of limestone cave systems in the dimensions of length and depth. Int J Speleol 10(3–4):213–244

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Hill CA, Forti P (1997) cave minerals of the world, 2nd edn. National Speleological Society, Huntsville, AL

    Google Scholar 

  • Hoffelt J (2009) The Cumberland Plateau of Tennessee. In: Palmer AN, Palmer MV (eds) Caves and Karst of America. National Speleological Society, Huntsville, AL, pp 85–91

    Google Scholar 

  • Jeannin P-Y (2001) Modeling flow in phreatic and epiphreatic karst conduits in the Holloch Cave (Muotatal, Switzerland). Water Resour Res 37(2):191–200

    Article  Google Scholar 

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. National Cave and Karst Research Institute Special Paper 1, 106 pp

    Google Scholar 

  • Marlier JF, O’Leary MH (1984) Carbon kinetic isotope effects on the hydration of carbon dioxide and the dehydration of bicarbonate ion. J Am Chem Soc 106:5054–5057

    Article  Google Scholar 

  • McFarlan AC (1943) Geology of Kentucky. University of Kentucky Press, Lexington, KY

    Google Scholar 

  • Metzger JG, Fike DA, Osburn GR, Guo CJ, Aadison AN (2015) The source of gypsum in Mammoth Cave, Kentucky. GSA Bull 43(2):187–190. doi:10.1130/G36131.1

    Google Scholar 

  • Onac BP, Wynn JG, Sumrall JB (2011) Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chem Geol 288:105–114

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH

    Google Scholar 

  • Palmer AN (2009) The Mammoth Cave Region, Kentucky. In: Palmer AN, Palmer MV (eds) Caves and karst of America. National Speleological Society, Huntsville, AL, pp 108–113

    Google Scholar 

  • Palmer AN, Palmer MV (1995) Geochemistry of capillary seepage in Mammoth Cave: Mammoth Cave National Park. In: 4th science conference, pp 119–133

    Google Scholar 

  • Parris TM, Webb DJ, Fedorchuk N, Daugherty S, Takacs K, Schumacher A (2009) Brine chemistry in the Illinois and Appalachian Basins of Kentucky—implications for geologic carbon sequestration. American Association of Petroleum Geologists Eastern Section Meeting, Evansville, Indiana

    Google Scholar 

  • Pohl ER, White WB (1965) Sulfate minerals—their origin in the central Kentucky Karst. Am Miner 50:1461–1465

    Google Scholar 

  • Renault P (1958) Eléments de spéléomorphologie karstique. Annales de. Spéléologie 13(1–4):23–48

    Google Scholar 

  • Sasowsky ID, White WB (1994) The role of stress release fracturing in the development of cavernous porosity in carbonate aquifers. Water Resour Res 30(12):3523–3530

    Article  Google Scholar 

  • Simpson LC, Florea LJ (2009) The Cumberland Plateau of Eastern Kentucky. In: Palmer AN, Palmer MV (eds). Caves and karst of America. National Speleological Society, Huntsville, AL, pp 70–79

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • White WB (2007) Cave sediments and paleoclimate. J Cave Karst Stud 69(1):76–93

    Google Scholar 

  • White WB, White EL (2003) Gypsum wedging and cavern breakdown: Studies in the Mammoth Cave system, Kentucky. J Cave Karst Stud 65(1):43–52

    Google Scholar 

  • White WB, White EL (2009) The Appalachian Mountains. In: Palmer AN, Palmer MV (eds) Caves and karst of America. National Speleological Society, Huntsville, AL, pp 17–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee J. Florea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Florea, L.J. (2017). Sulfur-Based Speleogenesis in the Cumberland Plateau, USA. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_45

Download citation

Publish with us

Policies and ethics