Skip to main content

Reversible Data Hiding for Texture Videos and Depth Maps Coding with Quality Scalability

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10082))

Included in the following conference series:

Abstract

To support 3-D video and free-viewpoint video applications, efficient texture videos and depth maps coding should be addressed. In this paper, a novel reversible data hiding scheme is proposed to integrate depth maps into corresponding texture video bitstreams. At the sender end, the depth video bitstream obtained by depth down-sampling and compression is embedded in residual coefficients of corresponding texture video. The data embedding is implemented by the histogram shifting technique. At the receiver end, the depth maps can be retrieved with scalable quality after data extraction, video decoding and texture-based depth reconstruction. Due to the attractive property of reversible data hiding, the texture video bitstream can be perfectly recovered. Experimental results demonstrate that the proposed scheme can achieve better video rendering quality and coding efficiency compared with existing related schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The independent embedding distortion is calculated by adding an error \(\delta \) to the (i, j)th quantized DCT coefficient in the \(4\times 4\) block using the MSE (Mean Squared Error) measure.

  2. 2.

    In [20], it is suggested that \(\bigtriangleup g_{pq}\) should be calculated in the \(\ell _2\)-norm. Actually, the better reconstructed depth map quality can be obtained if \(\bigtriangleup g_{pq}\) is calculated in the \(\ell _1\)-norm according to our experiments.

  3. 3.

    The color distance in the texture video is calculated between two texture samples which correspond to the missing depth sample and the nearest existing depth sample respectively.

References

  1. Alatan, A.A., Yemez, Y., Gudukbay, U., Zabulis, X., Muller, K., Erdem, C.E., Weigel, C., Smolic, A.: Scene representation technologies for 3DTV-a survey. IEEE Trans. Circ. Syst. Video Technol. 17(11), 1587–1605 (2007)

    Article  Google Scholar 

  2. Fehn, C.: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI, pp. 93–104 (2004)

    Google Scholar 

  3. Yuan, H., Chang, Y., Huo, J., Yang, F., Lu, Z.: Model-based joint bit allocation between texture videos and depth maps for 3-D video coding. IEEE Trans. Circ. Syst. Video Technol. 21(4), 485–497 (2011)

    Article  Google Scholar 

  4. Kim, W.-S., Ortega, A., Lai, P., Tian, D.: Depth map coding optimization using rendered view distortion for 3D video coding. IEEE Trans. Image Process. 24(11), 3534–3545 (2015)

    Article  MathSciNet  Google Scholar 

  5. Shao, F., Lin, W., Jiang, G., Yu, M.: Low-complexity depth coding by depth sensitivity aware rate-distortion optimization. IEEE Trans. Broadcast. 62(1), 94–102 (2016)

    Article  Google Scholar 

  6. Cao, Y., Zhang, H., Zhao, X., Yu, H.: Covert communication by compressed videos exploiting the uncertainty of motion estimation. IEEE Commun. Lett. 19(2), 203–206 (2015)

    Article  Google Scholar 

  7. Khan, A., Mahmood, M.T., Ali, A., Usman, I., Choi, T.-S.: Hiding depth map of an object in its 2D image: reversible watermarking for 3D cameras. In: Proceedings of International Conference on Consumer Electronics, pp. 1–2 (2009)

    Google Scholar 

  8. Tong, X., Shen, G., Xuan, G., Li, S., Yang, Z., Li, J., Shi, Y.Q.: Stereo image coding with histogram-pair based reversible data hiding. In: Proceedings of International Workshop on Digital-Forensics and Watermarking, pp. 201–214 (2014)

    Google Scholar 

  9. Wang, W., Zhao, J., Tam, W.J., Speranza, F., Wang, Z.: Hiding depth map into stereo image in JPEG format using reversible watermarking. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 82–85 (2011)

    Google Scholar 

  10. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video Technol. 13(8), 890–896 (2003)

    Article  Google Scholar 

  11. Jung, S.-W.: Lossless embedding of depth hints in JPEG compressed color images. Sig. Process. 122, 39–51 (2016)

    Article  Google Scholar 

  12. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  13. Wang, W., Zhao, J., Tam, W.J., Speranza, F.: Hiding depth information into H.264 compressed video using reversible watermarking. In: Proceedings of ACM Multimedia International Workshop on Cloud-based Multimedia Applications and Services for E-health, pp. 27–31 (2012)

    Google Scholar 

  14. Wang, W., Zhao, J.: Hiding depth information in compressed 2D image/video using reversible watermarking. Multimed. Tools Appl. 75(8), 4285–4303 (2016)

    Article  Google Scholar 

  15. Shahid, Z., Puech, W.: Synchronization of texture and depth map by data hiding for 3D H.264 video. In: Proceedings of International Conference on Image Processing, pp. 2773–2776 (2011)

    Google Scholar 

  16. Bellifemine, F., Capellino, A., Chimienti, A., Picco, R., Ponti, R.: Statistical analysis of the 2D-DCT coefficients of the differential signal for images. Sig. Process: Image Commun. 4(6), 477–488 (1992)

    Google Scholar 

  17. Gormish, M.J., Gill, J.T.: Computation-rate-distortion in transform coders for image compression. In: Proceedings of SPIE Image and Video Processing, pp. 146–152 (1993)

    Google Scholar 

  18. Ni, Z., Shi, Y.-Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol. 16(3), 354–362 (2006)

    Article  Google Scholar 

  19. Xu, D., Wang, R.: Efficient reversible data hiding in encrypted H.264/AVC videos. J. Electron. Imaging 23(5), 053022-1–053022-14 (2014)

    Article  Google Scholar 

  20. Yoon, K.-J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 650–656 (2006)

    Article  Google Scholar 

  21. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  22. Oh, K.-J., Vetro, A., Ho, Y.-S.: Depth coding using a boundary reconstruction filter for 3-D video systems. IEEE Trans. Circ. Syst. Video Technol. 21(3), 350–359 (2011)

    Article  Google Scholar 

  23. Yao, Y., Zhang, W., Yu, N.: Inter-frame distortion drift analysis for reversible data hiding in encrypted H.264/AVC video bitstreams. Sig. Process. 128, 531–545 (2016)

    Article  Google Scholar 

  24. ITU-T Recommendation: Advanced video coding for generic audiovisual services. ISO/IEC (2012)

    Google Scholar 

  25. The H.264/AVC joint model (JM), ver. 10.2. http://iphome.hhi.de/suehring/tml/download/old_jm/

  26. Free-viewpoint video sequences. http://www.tanimoto.nuee.nagoya-u.ac.jp/mpeg/mpeg_ftv.html

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wildeboer, M.O., Yendo, T., Tehrani, M.P., Fujii, T., Tanimoto, M.: Color based depth up-sampling for depth compression. In: Proceedings of Picture Coding Symposium, pp. 170–173 (2010)

    Google Scholar 

  29. OpenCV, ver. 2.4.9. http://opencv.org/

  30. Depth estimation view synthesis software. http://www.tanimoto.nuee.nagoya-u.ac.jp/mpeg/mpeg_ftv.html

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61572452, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA06030601, and in part by the China Scholarship Council Program under Grant 201506340006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhi Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yao, Y., Zhang, W., Yu, N. (2017). Reversible Data Hiding for Texture Videos and Depth Maps Coding with Quality Scalability. In: Shi, Y., Kim, H., Perez-Gonzalez, F., Liu, F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science(), vol 10082. Springer, Cham. https://doi.org/10.1007/978-3-319-53465-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53465-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53464-0

  • Online ISBN: 978-3-319-53465-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics