Skip to main content

General Introduction

  • Chapter
  • First Online:
Synthesis of Nanoparticles and Nanomaterials

Abstract

This chapter presents a brief introduction on the physical, physico-chemical, chemical, and biological properties of nanoparticles and nanomaterials, as well as their morphology including size parameters, size distribution, and shape characteristics. Methods for the determination of particle size and diameter are explained using fundamental equations. The general techniques for the synthesis of nanomaterials and nanopowders are described briefly in Scheme 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advanced English Dictionary. Copyright © Harper Collins Publishers (2016). http://www.collinsdictionary.com/dictionary/english/oxidation

  • Akbari B, Tavandashti MP, Zandrahim M (2011) Particle size characterization of nanoparticles – a practical approach. Iranian J Mater Sci Eng 8(2):48–56. http://ijmse.iust.ac.ir/article-1-341-en.html

    Google Scholar 

  • Baloyan BM, Kolmakov AG, Alymov MI, Krotov AM (2007) Nanomaterialy. In: Classificatsya, osobennosti svoistv, primenenie i tehnologii polucheniya. Dubna International University, Moscow. ISBN 978-5-9900086-2-5

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. http://dx.doi.org/10.1016/j.addr.2008.03.013

  • Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469–2495. http://DOI:10.1007/s00216-008-2185-7

    Article  Google Scholar 

  • Bogutska KI, Sklyarov YP, Prylutskyy YI (2013) Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr Bioorg Acta 1:9–16. www.bioorganica.org.ua

  • Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: Incorporating size, shape, and triggered release into nanoscale drug carrier. Expert Opin Drug Deliv 7(4):479–495. doi:10.1517/17425240903579971

    Article  Google Scholar 

  • Caruta BM (2015) Nanomatreials: new research. Nova Science Publishers, New York. ISBN 1-59454-369-0

    Google Scholar 

  • Cherkasova EV, Cherkasova TG, Tatarinova ES (2013) Nanomaterials and nanotechnologies. Methodical guidance for undergraduate students, Kemerovo. https://library.kuzstu.ru/dl.php?n=6705&type=

    Google Scholar 

  • Derjaguin V, Churaev NV, Muller VM (1987) The derjaguin-landau-verwey-overbeek (DLVO) theory of stability of lyophobic colloids, chapter. In: Surface forces. Springer, New York, pp 293–310. http://doi:10.1007/978-1-4757-6639-4_8

    Chapter  Google Scholar 

  • Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim 14:733–762. http://doi:10.2134/jeq2010.0156

    Google Scholar 

  • Dougherty GM, Rose KA, Tok JBH, Pannu SS, Chuang FYS, Sha MY (2007) The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution, UCRL-JRNL-230853, electrophoresis, Lawrence Livermore National Laboratory, CA 94551. http://doi:10.1002/elps.200700448

    Google Scholar 

  • Gafner YY, Gafner SL, Zamulin IS et al (2015) Analysis of the heat capacity of nanoclusters of FCC metals on the example of Al, Ni, Cu, Pd, and Au. Phys Met Metallogr 116:568. doi:10.1134/S0031918X15040055

    Article  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F et al (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471. doi:10.1007/s11783-014-0654-0

    Article  Google Scholar 

  • González-Tello P, Camacho F, Vicaria, José M, González PA (2010) Analysis of the mean diameters and particle-size distribution in powders. Part Part Syst Char-act 27:158–164. http://doi:10.1002/ppsc.200900097

    Google Scholar 

  • Gopalakrishnan S (2014) Smart materials technology for aerospace applications, chapter, micro and smart devices and systems. Springer, New Delhi. ISBN 978-81-322-1912-5

    Google Scholar 

  • Handy RD, von der Kammer F, Lead JR et al (2008) Ecotoxicology 17:287. doi:10.1007/s10646-008-0199-8

    Article  Google Scholar 

  • Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271. http://dx.doi.org/10.1016/j.mattod.2013.07.004

    Article  Google Scholar 

  • Hinterwirth H, Wiedmer SK, Moilanen M, Lehner A, Allmaier G, Waitz T et al (2013) Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J Sep Sci 36:2952–2961

    Article  Google Scholar 

  • Hunter RJ (2012) Zeta Potential in Colloid Science. Academic Press, San Diego, 1981. http://doi:10.1007/s12010-012-9548-4

    Google Scholar 

  • Jiang XM, Wang LM, Wang J et al (2012) Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl Biochem Biotechnol 166:1533. http://doi:10.1007/s12010-012-9548-4

    Google Scholar 

  • Kolesnik IV, Eliseev AA (2011) Himicheskie metodi sinteza nanomaterialov, MGU im. M.V. Lomonosova, Moskva. http://www.nanometer.ru/2009/10/27/12565944076650/PROP_FILE_files_1/physprep.pdf

  • Kovtun GP, Verevkin AA (2010) Nanomaterialy: tehnologii i materialovedenie, Kharkov, Natsionalnyi Nauschnyi Tsentr. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/41/124/41124865.pdf

  • Kumar N, Kumbhat S (2016) Chapter: nanomaterials: general synthetic approaches, Wiley. doi: 10.1002/9781119096122.ch2

  • Kumar N, Auffan M, Gattacceca J, Rose J, Olivi L, Borschneck D et al (2014) Molecular insights of oxidation process of iron nanoparticles: spectroscopic, magnetic, and microscopic evidence. Environ Sci Technol 48(23):13888–13894. doi:10.1021/es503154q

    Article  Google Scholar 

  • Liu F, Wu J, Chen K, Xue D (2010) Morphology study by using scanning electron microscopy, microscopy: science, technology, applications and education. Méndez-Vilas A, Díaz J (eds), 1782 ©FORMATEX. http://www.formatex.info/microscopy4/1781-1792.pdf

  • McCreery RL, Bergren AJ (2012) Chapter: surface functionalization in the nanoscale domain, nanofabrication. Springer, Wien. doi: 10.1007/978–3–7091-0424-8_7

    Google Scholar 

  • Merriam-Webster On-line Dictionary. (2016). http://www.merriam-webster.com/dictionary/powder%20metallurgy

  • Mc Nutt P (1999) Surface management regulations for locatable mineral operations (43 CFR 3809). Environmental Impact Statement, Washington, DC

    Google Scholar 

  • Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6. doi:10.1186/2251-7235-6-6

    Article  Google Scholar 

  • Murphy CJ, Vartanian AM (2015) Biological responses to engineered nanomaterials: needs for the next decade. ACS Cent Sci 1:117–123. doi:10.1021/acscentsci.5b00182

    Article  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. http://doi:10.1038/nmat2442

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1):3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  • Ostwald WZ (1901) Electrochem 72:995–1004

    Google Scholar 

  • Ostwald WZ (1894) Definition der Katalyse. Phys Chem 15:705–706

    Google Scholar 

  • Oxford Dictionary On-line (2016). https://en.oxforddictionaries.com/definition/nanomaterial

  • Petrunin V (2014) Physical properties on nanostructures and their applications. http://www.rusnor.org/pubs/articles/10953.htm

  • Pratt A, Lari L, Hovorka O, Shah A, Woffinden C, Steve P (2014) Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nat Mater 13:26–30. doi:10.1038/nmat3785

    Article  Google Scholar 

  • Qiu Y, Liu Y, Wang L, Xu L, Bai R, Yinglu Ji Y (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606e7619. http://doi.org/10.1016/j.biomaterials.2010.06.051

    Article  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman A (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. http://doi.org/10.1016/j.matlet.2011.12.055

    Article  Google Scholar 

  • Sachindri R, Kalaichelvan PT (2011) Antibacterial activities of metal nanoparticles. Adv Biotech 11(02):21–23

    Google Scholar 

  • Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotech 2(3):1–6. http://DOI:10.1186/1477-3155-2-3

    Google Scholar 

  • Santos SCS, Gabriel B, Blanchy M, Menes O, García Denise García D, Garcia D, Bianco M et al (2015) Industrial applications of nanoparticles – a prospective overview, industrial applications of nanoparticles, materials today: proceedings. 2, 1, p 456–465. http://doi:10.131140/2.1.5100.6726

    Google Scholar 

  • Sanyal MK, Datta A, Hazr S (2002) Morphology of nanostructured materials. Pure Appl Chem 74(9):1553–1570. © IUPAC. https://doi.org/10.1351/pac200274091553

    Article  Google Scholar 

  • Smoluchowski M (1921) In: Graetz W (ed) Handbuch der electrizitat und des magnetismus, vol II. Barth, Leipzig

    Google Scholar 

  • Sze A, Erickson D, Ren L, Li D (2003) Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci 261:402–410. http://doi:10.1016/S0021-9797(03)00142-5

    Google Scholar 

  • Tak KY, Pal S, Naoghare P, Rangasamy S, Song JM (2015) Shape-dependent skin penetration of silver NPs: does it really matter? Sci Rep 5, article number 16908: 1–11. http://doi:10.1038/srep16908

    Google Scholar 

  • Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R 45:1–88. http://doi:10.1016/j.mser.2004.07.001

    Article  Google Scholar 

  • Tuantranont A (2013) Applications of nanomaterials in sensors and diagnostics. Springer, Berlin/New York. ISBN 978-3-642-36025-1

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Elsevier, New York, 205 pp

    Google Scholar 

  • Wahlund K-G (2013) Flow field-flow fractionation: critical overview. J Chromatogr A 1287:97–112. http://doi.org/10.1016/j.chroma.2013.02.028

    Article  Google Scholar 

  • Weber AP, Davoodi P, Seipenbusch M et al (2006) Catalytic behavior of nickel nanoparticles: gasborne vs. supported state. J Nanopart Res 8:445. doi:10.1007/s11051-005-9025-x

    Article  Google Scholar 

  • Zhang Y, Liao S, Fan Y et al (2001) Chemical reactivities of magnesium nanopowders. J Nanopart Res 3:23. doi:10.1023/A:1011462326282

    Article  Google Scholar 

  • Zou M, Yang D (2006) Nanoindentation of silica nanoparticles attached to a silicon substrate. Tribol Lett 22(2):189. doi:10.1007/s11249-006-9079-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdullaeva, Z. (2017). General Introduction. In: Synthesis of Nanoparticles and Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-54075-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54075-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54074-0

  • Online ISBN: 978-3-319-54075-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics