Skip to main content

Quantifying the Effect of Metapopulation Size on the Persistence of Infectious Diseases in a Metapopulation

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10192))

Included in the following conference series:

  • 2134 Accesses

Abstract

We investigate the special role of the three-dimensional relationship between periodicity, persistence and synchronization on its ability of disease persistence in a meta-population. Persistence is dominated by synchronization effects, but synchronization is dominated by the coupling strength and the interaction between local population size and human movement. Here we focus on the quite important role of population size on the ability of disease persistence. We implement the simulations of stochastic dynamics in a susceptible-exposed-infectious-recovered (SEIR) metapopulation model in space. Applying the continuous-time Markov description of the model of deterministic equations, the direct method of Gillespie [10] in the class of Monte-Carlo simulation methods allows us to simulate exactly the transmission of diseases through the seasonally forced and spatially structured SEIR meta-population model. Our finding shows the ability of the disease persistence in the meta-population is formulated as an exponential survival model on data simulated by the stochastic model. Increasing the meta-population size leads to the clearly decrease of the extinction rates local as well as global. The curve of the coupling rate against the extinction rate which looks like a convex functions, gains the minimum value in the medium interval, and its curvature is directly proportional to the meta-population size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9(4), 467–484 (2006)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  3. Bailey, N.T.J., et al.: The mathematical theory of epidemics (1957)

    Google Scholar 

  4. Bartlett, M.S.: The critical community size for measles in the united states. J. Roy. Stat. Soc. Ser. A (Gen.) 37–44 (1960)

    Google Scholar 

  5. Bjørnstad, O.N., Finkenstädt, B.F., Grenfell, B.T.: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol. Monogr. 72(2), 169–184 (2002)

    Article  Google Scholar 

  6. Black, F.L.: Measles endemicity in insular populations: critical community size and its evolutionary implication. J. Theor. Biol. 11(2), 207–211 (1966)

    Article  Google Scholar 

  7. Conlan, A.J.K., Grenfell, B.T.: Seasonality and the persistence and invasion of measles. Proc. Biol. Sci. 274(1614), 1133–1141 (2007)

    Article  Google Scholar 

  8. Conlan, A.J.K., Rohani, P., Lloyd, A.L., Keeling, M., Grenfell, B.T.: Resolving the impact of waiting time distributions on the persistence of measles. J. R. Soc. Interface (2010)

    Google Scholar 

  9. Ferrari, M.J., Grais, R.F., Bharti, N., Conlan, A.J.K., Bjørnstad, O.N., Wolfson, L.J., Guerin, P.J., Djibo, A., Grenfell, B.T.: The dynamics of measles in sub-Saharan Africa. Nature 451(7179), 679–684 (2008)

    Article  Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  11. Grenfell, B., Harwood, J.: (Meta)population dynamics of infectious diseases. TREE 12, 395–399 (1997)

    Google Scholar 

  12. Grenfell, B.T., Bjørnstad, O.N., Kappey, J.: Travelling waves and spatial hierarchies in measles epidemics. Nature 414(6865), 716–723 (2001)

    Article  Google Scholar 

  13. Grenfell, B.T., Bjørnstad, O.N., Finkenstädt, B.F.: Dynamics of measles epidemics: scaling noise, determinism, and predictability with the TSIR model. Ecol. Monogr. 72(2), 185–202 (2002)

    Article  Google Scholar 

  14. Grenfell, B.T.: Cities and villages: infection hierarchies in a measles metapopulation. Ecol. Lett. 1, 68–70 (1998)

    Article  Google Scholar 

  15. Grenfell, B.T., Bolker, B.M., Klegzkowski, A.: Seasonality and extinction in chaotic metapopulation. R. Soc. 259, 97–103 (1995)

    Article  Google Scholar 

  16. Hamer, W.H.: The Milroy Lectures on Epidemic Disease in England: The Evidence of Variability and of Persistency of Type. Bedford Press, London (1906)

    Google Scholar 

  17. Holyoak, M., Lawler, S.P.: Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics. Ecology 1867–1879 (1996)

    Google Scholar 

  18. Huffaker, C.B.: Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27, 343–383 (1958)

    Article  Google Scholar 

  19. Keeling, M.J., Grenfell, B.T.: Understanding the persistence of measles: reconciling theory, simulation and observation. Proc. Biol. Sci. 269(1489), 335–343 (2002)

    Article  Google Scholar 

  20. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  21. Kleinbaum, D.G.: Survival Analysis (2005)

    Google Scholar 

  22. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969)

    Google Scholar 

  23. Soper, H.E.: The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92(1), 34–73 (1929)

    Article  MATH  Google Scholar 

  24. Therneau, T.M.: A Package for Survival Analysis in S, 2014. R Package Version 2.37-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cam-Giang Tran-Thi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tran-Thi, CG., Choisy, M., Zucker, J.D. (2017). Quantifying the Effect of Metapopulation Size on the Persistence of Infectious Diseases in a Metapopulation. In: Nguyen, N., Tojo, S., Nguyen, L., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. Lecture Notes in Computer Science(), vol 10192. Springer, Cham. https://doi.org/10.1007/978-3-319-54430-4_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54430-4_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54429-8

  • Online ISBN: 978-3-319-54430-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics