Skip to main content

On the Epistemic and Social Foundations of Mathematics as Tool and Instrument in Observatories, 1793–1846

  • Chapter
  • First Online:
Mathematics as a Tool

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 327))

Abstract

This chapter focuses on three episodes in the history of observatories between 1793 and 1846, to examine the epistemic and social foundations of the conception of mathematics as a tool. This is an interesting case because in the observatory culture sophisticated uses of mathematics have always been deployed side-by-side with tools and instruments taken in a material sense. We look at the Paris Observatory under the French Revolution to introduce crucial distinctions between tools and instruments. We then turn to the Royal Observatory Greenwich to show how specific social techniques were developed in order to improve the precision of the mathematical tool. We finally consider the case of Bessel functions developed at the Könisberg Observatory to show that astronomers also tinkered with the mathematical instrument, like they did with telescopes, to increase its precision. This chapter is intended as a contribution to the epistemological debate regarding the “unreasonable effectiveness,” or applicability of mathematics to the natural sciences. I argue that if we take seriously the analogy between mathematics and tools and instruments, this effectiveness is rather similar to that of tools and instruments; that is, the effectiveness of mathematics is the product of specific practices performed by socially diversified communities precisely to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    William Herschel to Caroline Herschel, June 5, 1782 (Lubbock 1933, 115).

  2. 2.

    “Remarks on the neglect, by the Junior Assistants, of the course of education and scientific preparation recommended to them.” Airy Papers, Cambridge University Library, RGO 6/43, 235. About this memo, see Aubin (2009), 273 and 276–277.

  3. 3.

    Jedes Instrument wird auf diese Art zweimal gemacht, einmal in der Werkstatt des Künstlers von Messing und Stahl; zum zweitenmale aber von dem Astronomen aud seinem Papiere, durch die Register der nöthingen Verbesserungen, welche er durch seine Untersuchung erlangt.

  4. 4.

    In this article, I shall not refer to the “mathematical instruments” tradition, which obviously played a role in shaping the conception of instruments in the observatory culture. By the late eighteenth century, astronomers were relying on highly skilled makers, such as Jesse Ramsey and Edward Troughton, fellows of the Royal Society whose names were, as we shall see, routinely attached to the high-precision instruments they produced (Bennett 2011; Chapman 1995).

  5. 5.

    As expressed by Gottlob Frege in 1884, there is a simple solution to the applicability problem: “The laws of numbers, therefore, are not really applicable to external things; they are not laws of nature. They are, however, applicable to judgments holding good of things in the external world: they are laws of the laws of nature” (Frege 1980), quoted by (Withold 2006, 74). For another visions of mathematics as a language in this context, see Sarukkai (2005).

  6. 6.

    One may think, among other cases, of the Gauss–Laplace theory of errors (Sheynin 1973) or Poincaré’s qualitative dynamics (Roque 2015).

  7. 7.

    See “Pièce justificative N  X: Inventaire des instrumens de l’Observatoire national de Paris en 1793,” Archives nationales F17/1219; Archives de l’Observatoire D.5.38; repr. (Cassini 1810), 208–217). The date of this report is uncertain, but September 19, 1793 is a reasonable estimate (Wolf 1902, 349). Dated “19 of the first month of Year II” [which should be 19 vendémiaire, that is, October 10], the report was said to be completed when discussed by the Commission temporaire des arts on September 26. According to his biographer, Cassini left the Observatory never to come back, on October 3rd (S.-Devic 1851, 205).

  8. 8.

    Informations about the Commission and these commissioners can in particular be found in its proceedings (Tuetet 1912). On scientific instruments at this time, see also Daumas (1953). On Charles, see Blondel (2003).

  9. 9.

    Under the Terror, Cassini was jailed in the English Benedictine Convent on February 14, 1794. He was freed after Robespierre’s downfall, on August 5, 1794, but never returned to the Observatory. For more information on the history of the Paris Observatory during the French Revolution, I refer to Chapin (1990) and Aubin (2013); more complete accounts in French can be found in Cassini (1810), S.-Devic (1851), Wolf (1902).

  10. 10.

    N  1. Lunette achromatique de Dollond, objectif à trois verres de 42 lignes d’ouverture, 3 pieds et demi de foyer ; elle a trois oculaires, un terrestre et deux célestes ; elle est montée sur un pied d’acajou à colonne de cuivre avec tous ses mouvemens; à cette lunette s’adapte un héliomètre de Bouger, objectif simple, plus un micromètre filaire de Hautpois.

  11. 11.

    About instruments in state of disrepair, see Schaffer (2011).

  12. 12.

    Outil, (…) instrument dont les ouvriers & artisans se servent pour travailler aux différens ouvrages de leur profession, art & métier ; tels sont les marteaux, les compas, les rabots, les équerres, les villebrequins, &c. (…) Nous ajoutons seulement que les ouvriers mettent quelque différence entre les outils & les instrumens ; tout outil étant instrument, & tout instrument n’étant point outil.

  13. 13.

    Father Cotte, a cleric, is known for his work on meteorology and on the popularization of natural history, physics, and astronomy (Pueyo 1994).

  14. 14.

    On entend par Machine une combinaison de plusieurs machines simples, telles que le levier, le treuil, la poulie, etc. dont le résultat est de suppléer aux forces de l’homme et de produire de grands effets en peu de tems et avec peu de dépense dans toutes les Opérations mécaniques où elles sont employées (…). L’Instrument est bien aussi une espèce de machine, mais susceptible d’une très-grande précision, pour pouvoir être employée dans les Opérations scientifiques qui demandent de l’exactitude, comme l’astronomie, la géométrie pratique, la chirurgie, etc. L’Appareil est une combinaison de différens instrumens dont la réunion concourt à démontrer les vérités physiques, mathématiques, chimiques, etc. L’Outil est un instrument simple, le plus souvent de l’espèce du coin, qui sert dans les Opérations manuelles et habituelles des arts et des métiers.

  15. 15.

    It is interesting to note that, in the definition of the word instrument, the Oxford English Dictionary today explains, similarly, that the distinction between tools, instruments, and machines, is based on social, rather than lexicographical, grounds: “Now usually distinguished from a tool, as being used for more delicate work or for artistic or scientific purposes; a workman or artisan has his tools, a draughtsman, surgeon, dentist, astronomical observer, his instruments. Distinguished from a machine, as being simpler, having less mechanism, and doing less work of itself; but the terms overlap.” Note added to the definition of “Instrument” (www.oed.com).

  16. 16.

    On the history of the Dudley Observatory, see Wise (2004).

  17. 17.

    Airy, “Remarks on the neglect, by the Junior Assistants, of the course of education and scientific preparation recommended to them” (Dec. 4, 1861). RGO 6/43, 235.

  18. 18.

    Several slightly different copies of this memo are extent in Airy’s papers at the Cambridge University Library. A first draft was written on November 20, 1856 and a slightly revised version was adopted on May 10, 1857. In the following I quote from RGO 6/43, 170–175. For a more detailed analysis of this memo, see Aubin (2009, 277).

  19. 19.

    On the division of computing labor at Greenwich, see Grier (2005).

  20. 20.

    RGO 6/24/33: Airy’s Diary

  21. 21.

    Airy to Bowman, January 8, 1839. RGO 6/526, 86.

  22. 22.

    Thomas to Airy, January 21, 1839. RGO 6/525, 29, orig. emphasis; (Dunkin 1999, 72).

  23. 23.

    All quotations in the above paragraph from Thomas to Airy, January 21, 1839. RGO 6/524 File 10bis, 352, orig. emphasis. “Units of the same kind but of different magnitudes, as pounds, shillings, pence, and farthings, which are units of value …are called units of different denominations” (De Morgan 1836, 25).

  24. 24.

    Stratford (1791–1853) entered the Navy on February 10, 1806; he was the first secretary of the Royal Astronomical Society in 1826–1831 and superintendent of the Nautical Almanac from 1830 to his death. On the story of this institution up to that point, see Dunkin (1898) and Croarken (2003).

  25. 25.

    All quotes are from Thomas to Airy, January 21, 1839. RGO 6/525, 29.

  26. 26.

    Thomas to Airy, undated [1838]. RGO 6/525, 15, orig. emphasis. Esq. Mathematical Master at the Royal Naval School, Camberwell, Foley was later elected a Fellow of the Royal Astronomical Society; see Monthly Notices of the Royal Astronomical Society 6 (1844), 52.

  27. 27.

    Stratford’s opinions about computers are in Thomas to Airy, January 21, 1839. RGO 6/525, 29.

  28. 28.

    Thomas to Airy, January 21, 1839. RGO 6/525, 29.

  29. 29.

    On Bessel, see Hammel (1984) and Ławrynowicz (1995), as well as Olesko (1991).

  30. 30.

    Bessel to Airy, October 5, 1845. RGO 6/530, 75–76. I quote from one of the two (nearly identical) English translations in Airy’s papers (ibid., 76–78 and 79–80).

  31. 31.

    (Bessel 1819), 19; trans. (Hoffmann 2007), 346, my emphasis: “die eine enthält die eigentlichen Beobachtungsfehler, die von unzähligen zufälligen Ursachen abhängen und deshalb den allgemeinen Sätzen der Wahrscheinlichkeitsrechnung folgend angesehen werden können; die andere begreift die von beständig einwirkenden Ursachen herrührenden, der Abweichung der Instrumente von ihrer mathematischen Idee, oder ihrer Behandlungsart zuzuschreibenden.”

  32. 32.

    See Hoffmann (2007). On the personal equation, see also Schaffer (1988) and Canales (2001).

  33. 33.

    Bessel (1819), ix; Bessel (1875–1876), 2:24: “Ehe ich die nähere Untersuchung dieses und der übrigen Fehler des Kreises mittheile, erlaube ich mir eine Abschweifung über die Auflösung einer häufig in der praktischen Astronomie vorkommenden Classe von Gleichungen, die ihre Anwendung finden wird.”

  34. 34.

    See, e.g., Watson (1966) and Hochstadt (1986), ch. 8.

  35. 35.

    Bessel (1824); repr. Bessel (1875–1876), 1:86: “Ob aber die astronomischen Theorien allenthalben in so grosser übereinstimmung mit den Beobachtungen sind, dass dadurch jeder Zweifel an der Wahrheit der Newton’schen Annahme zurückgewiesen wird, dieses ist eine Frage, welche wohl Niemand bejahen wird, deren genaue Erörterung jedoch sehr wichtig ist und die grössten Fortschritte der Wissenschaft verheisst.” For a study of Bessel’s cosmological understanding of Newton’s law, see Merleau-Ponty (1983), 119–122.

  36. 36.

    Excerpt from Le Verrier inaugural lecture at the Sorbonne; quoted in Revue scientifique et industrielle 28 (1847), 131.

  37. 37.

    Humboldt to Jacobi, December 22, 1846 (Humboldt and Jacobi 1987, 103).

  38. 38.

    Jacobi to Humboldt, December 26, 1846; (Humboldt and Jacobi 1987, 104): “Du lieber Gott! Hier heißt es nicht, Gedanken tief, sondern Hand flink.” Below, Jacobi added: “dieser Sachen kriegen erst durch die wirkliche numerische Ausfürung Werth, und es ist langweilich, jeder dünnen Gedanken sogleich mit 10,000 Logaritmen escortiren so müssen” (Humboldt and Jacobi 1987, 105–106). Humboldt himself called Jacobi’s a “donnerdend Brief” (Humboldt and Jacobi 1987, 109).

  39. 39.

    Jacobi to Humboldt, December 21, 1846 (Humboldt and Jacobi 1987, 100): “wenn Leverrier mit dem Auge der Mathematik einen neuen Planeten gesehen hat, habe ich damals der Mathematik ein neues Auge eingesetzt.” Jacobi was referring to his theory of elliptic functions (1829) which was used by Le Verrier in his work.

  40. 40.

    Jacobi to Legendre, July 2, 1830 (Jacobi 1881–1884, 1:453): “le but unique de la science, c’est l’honneur de l’esprit humain, et (…) sous ce titre, une question de nombres vaut autant qu’une question de système du monde.” In a complementary approach, one might also consider Bessel acting as a research-technologist in the sense put forward in (Shinn 2008).

References

  • Anonymous. (1781). Biographical memoirs of Mr. Sharp. Gentlemen’s Magazine, 51,461–463.

    Google Scholar 

  • Aubin, D. (2009). Observatory mathematics in the nineteenth century. In E. Robson & J. A. Steddal (Eds.), Oxford handbook for the history of mathematics (pp. 273–298). Oxford: Oxford University Press.

    Google Scholar 

  • Aubin, D. (2013). On the cosmopolitics of astronomy in nineteenth-century Paris. In S. Neef, D. Boschung, & H. Sussman (Eds.), Astroculture: Figurations of cosmology in media and arts (pp. 61–84). Paderborn: Wilhelm Fink.

    Google Scholar 

  • Aubin, D. (2015). L’observatoire: régimes de spatialité et délocalisation du savoir, 1769–1917. In D. Pestre (Ed.), Histoire des sciences et des savoirs de la Renaissance à nos jours (Vol. 2, pp. 54–71). Paris: Le Seuil.

    Google Scholar 

  • Aubin, D., Bigg, C., & Sibum, H. O. (Eds.). (2010). The heavens on earth: Observatories and astronomy in nineteenth-century science and culture. Rayleigh: Duke University Press.

    Google Scholar 

  • Bacon, F. (1676). The Novum Organum of Sir Francis Bacon, Baron of Verulam, Viscount St. Albans, Epitomiz’d, for a Clearer Understanding of His Natural History, Translated and Taken Out of the Latine by M.D.. London: Thomas Lee.

    Google Scholar 

  • Bangu, S. (2012). The applicability of mathematics in science: Indispensability and ontology. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Barty-King, H. (1986). Eyes right: The story of Dollond & Aitchison opticians, 1750–1985. London: Quiller Press.

    Google Scholar 

  • Bell, L. (1922). The telescope. New York: MacGraw-Hill.

    Google Scholar 

  • Bennett, J. (2011). Early modern mathematical instruments. Isis, 102, 697–705.

    Article  Google Scholar 

  • Bessel, F. W. (1815). Beschreibung und Untersuchung der Instrumente. Astronomische Beobachtungen auf der Königlischen Universitäts-Sternwarte in Königsberg (1813–1814) 1:iii–xxiv. Repr.: Ueber das Dollond’sche Mittagsfernrohr und den Cary’schen Kreis. In Bessel (1875–1876).

    Google Scholar 

  • Bessel, F. W. (1819). Analytische Auflösung der Kepler’schen Aufgabe. Abhandlungen der Berliner Akademie Akademie der Wissenschaften in Berlin. Mathematische Classe (1816–1817): 49–55. Repr. In Bessel (1875–1876).

    Google Scholar 

  • Bessel, F. W. (1824). Untersuchung des Theils der planetaruschen Störungen, welcher aux der Bewegung der Sonne entsteht. Repr. In Bessel (1875–1876).

    Google Scholar 

  • Bessel, F. W. (1848). Populäre Vorlesungen über wissenschaftliche Gegenstände (H. C. Schumacher, Ed.). Hamburg: Perthes-Besser & Mauke.

    Google Scholar 

  • Bessel, F. W. (1875–1876). Abhandlungen (3 Vols) (R. Engelmann, Ed.). Leipzig: Wilhelm Engelmann.

    Google Scholar 

  • Biot, J.-B. (1803). Essai sur l’histoire générale des sciences pendant la Révolution française. Paris: Duprat & Fuchs.

    Google Scholar 

  • Blondel, C.-J. (2003). Un enfant illustre de Beaugency: Le physicien et aéronaute Jacques Charles (1746–1823). Les Publications de l’Académie d’Orléans : Agriculture, Sciences, Belles-Lettres et Arts, no. 4 (December), 1–81.

    Google Scholar 

  • Canales, J. (2001). The single eye: Reevaluating ancien régime science. History of Science, 39, 71–94.

    Article  Google Scholar 

  • Carl, P. (1863). Die Principien der astronomischen Instrumentenkunde. Leipzig: Voigt & Günther.

    Google Scholar 

  • Cassini, J.-D. (1793). Des principales observations faites depuis 1671 jusqu’en 1789, sur les phases de l’anneau de Saturne. Mémoires de l’Académie des sciences pour 1789, 142–153.

    Google Scholar 

  • Cassini, J.-D. (1810). Mémoires pour servir à l’histoire des sciences et à celle de l’Observatoire royal de Paris, suivis de la vie de J.-D. Cassini écrite par lui-même et des éloges de plusieurs académiciens morts pendant la Révolution. Paris: Bleuet.

    Google Scholar 

  • Chapin, S. L. (1990). The vicissitudes of a scientific institution: A decade of change at the Paris Observatory. Journal for the History of Astronomy, 21, 235–274.

    Google Scholar 

  • Chapman, A. (1995). Dividing the circle: The development of critical angular measurement in astronomy, 1500–1850 (2nd ed.). Chichester: John Wiley.

    Google Scholar 

  • Chapman, A. (1996). Astronomical instruments and their users: Tycho Brahe to William Lassel. Aldershot: Variorum.

    Google Scholar 

  • Cotte, L. (1801). Vocabulaire portatif des mécaniques, ou définition, description abrégée et usage des machines, instrumens et outils employés dans les sciences, les arts et les métiers, avec l’indication des ouvrages où se trouve leur description plus détaillée. Paris: Delalain.

    Google Scholar 

  • Croarken, M. (2003). Tabulating the heavens: First computers of the Nautical Almanac. IEEE Annals of the History of Computing, 2, 48–61.

    Article  Google Scholar 

  • Crowe, M. J. (1994). Modern theories of the universe: From Hershel to Hubble. New York: Dover.

    Google Scholar 

  • Daumas, M. (1953). Les Instruments scientifiques aux XVII e et XVIII e siècles. Paris: Presses universitaires de France.

    Google Scholar 

  • Delambre, J.-B. (1821). Histoire de l’astronomie moderne (2 Vols.). Paris: Veuve Courcier.

    Google Scholar 

  • De Morgan, A. (1836). Arithmetic and Algebra. In: Library of useful knowledge, mathematics. London: Baldwin and Cradock.

    Google Scholar 

  • Diderot, D., & D’Alembert, J. Le R. (Eds.). (1751–1765). Encyclopédie,, ou dictionnaire raisonné des sciences, des arts et des métiers (17 Vols.). Paris & Neuchâtel.

    Google Scholar 

  • Donnelly, K. (2014). On the boredom of science: Positional astronomy in the nineteenth century. British Journal for the History of Science, 47,479–503.

    Article  Google Scholar 

  • Dunkin, E. (1896). Richard Dunkin [obituary notice]. Monthly Notices of the Royal Astronomical Society, 56, 197–199.

    Google Scholar 

  • Dunkin, E. (1898). Notes on some points connected with the early history of the “Nautical Almanac.” The Observatory, 21, 49–53, 123–127.

    Google Scholar 

  • Dunkin, E. (1999). A far off vision: A Cornishman at Greenwich observatory, autobiographical notes by Edwin Dunkin, F.R.S., F.R.A.S. (1821–1898) with notes on the lives & work of his father, brother and son (P. D. Hingley & T. C. Daniel, Eds.). Truro, Cornwall: Royal Institution of Cornwall.

    Google Scholar 

  • Dutka, J. (1995). On the early history of Bessel’s functions. Archives for History of Exact Sciences, 49, 105–134.

    Article  Google Scholar 

  • Frege, G. (1980). The foundations of arithmetic (J. L. Austin, Trans.). Oxford: Blackwell. (Originally published 1884)

    Google Scholar 

  • Gauss, C. F., & Bessel, F. W. (1975). Briefwechsel. [= Carl Friedrich Gauss, Werke. Ergänzungreihe, vol. 1] Hildeheim: Gorg Olms. Repr. from Briefwechsel zwischen Gauss und Bessel. Leipzig: Wilhelm Engelmann, 1880.

    Google Scholar 

  • Grier, D. A. (2005). When computers were human. Princeton: Princeton University Press.

    Google Scholar 

  • Hammel, J. (1984). Friedrich Wilhem Bessel. Leipzig: Teubner.

    Google Scholar 

  • Harrington, M. W. (1883–1884). The tools of the astronomer. The Sidereal Messenger, 2, 248–251, 261–268, 297–305.

    Google Scholar 

  • Henry, J., Bache, A. D., & Pierce, B. (1858). Defense of Dr. Gould by the scientific council of the Dudley Observatory (3rd ed.). Albany: The Scientific Council.

    Google Scholar 

  • Herschel, J. F. W. (1847). A brief notice of the life, researches, and discoveries of Friedrich Wilhelm Bessel. Notices of the Royal Astronomical Society, 7, 200–214.

    Google Scholar 

  • Hochstadt, H. (1986). The functions of mathematical physics. New York: Dover.

    Google Scholar 

  • Hoffmann, C. (2007). Constant differences: Friedrich Wilhelm Bessel, the concept of the observer in early nineteenth-century practical astronomy, and the history of the personal equation. British Journal for the History of Science, 40, 333–365.

    Article  Google Scholar 

  • von Humboldt, A., & Jacobi, C. G. J. (1987). Briefwechsel (H. Pieper, Ed.). Berlin: Akademie.

    Google Scholar 

  • Jacobi, C. G. J. (1881–1884). Gesammelte Werke (8 Vols). Berlin: G. Reimer.

    Google Scholar 

  • Jardine, N., Leedham-Green, E., & Lewis, C. (2014). Johann Baptist Hebenstreit’s Idyll on the Temple of Urania, the Frontispiece Image of Kepler’s Rudolphine Tables, Part 1: Context and Significance. Journal for the History of Astronomy, 45, 1–19.

    Article  Google Scholar 

  • King, H. C. (1955). The history of the telescope. London: Charles Griffin.

    Google Scholar 

  • Ławrynowicz, K. (1995). Friedrich Wilhelm Bessel 1784–1846 (K. Hansen-Matyssek & H. Matyssek, Trans.). Berlin: Birkhaüser.

    Google Scholar 

  • Lubbock, C. A. (1933). The Herschel chronicle. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.

    Google Scholar 

  • Merleau-Ponty, J. (1983). Les Sciences de l’univers à l’âge du positivisme: étude sur les origines de la cosmologie contemporaine. Paris: Vrin.

    Google Scholar 

  • Olesko, K. (1991). Physics as a calling: Discipline and practice in the Königsberg seminar for physics. Ithaca: Cornell University Press.

    Google Scholar 

  • Pueyo, G. (1994). Les deux vocations de Louis Cotte, prêtre et météorologiste (1740–1815). Bulletin des Académie et Société lorraines des sciences, 33, 205–212.

    Google Scholar 

  • Roque, T. (2015). L’originalité de Poincaré en mécanique céleste: pratique des solutions périodiques dans un réseau de textes. Revue d’Histoire des Mathématiques, 21, 37–105.

    Google Scholar 

  • S.-Devic, M. J. F. (1851). Histoire de la vie et des travaux scientifiques et littéraires de J[ean]-D[ominique] Cassini IV. Clermont, Oise: Alexandre Daix.

    Google Scholar 

  • Sarukkai, S. (2005). Revisiting the unreasonable effectiveness of mathematics. Current Science, 88, 415–423.

    Google Scholar 

  • Schaffer, S. (1988). Astronomers mark time. Science in Context, 2, 115–145.

    Article  Google Scholar 

  • Schaffer, S. (2011). Easily cracked: Scientific instruments in states of disrepair. Isis, 102, 706–717.

    Article  Google Scholar 

  • Sheynin, O. B. (1973). Mathematical treatment of astronomical observations (a historical essay). Archives for the History of Exact Sciences, 11, 97–126.

    Article  Google Scholar 

  • Shinn, T. (2008). Research-technology and cultural change: Instrumentation, genericity, transversality. Oxford: Bardwell Press.

    Google Scholar 

  • Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Taub, L. (2011). Reengaging with instruments. Isis, 102, 689–696.

    Article  Google Scholar 

  • Tuetet, L. (Ed.). (1912). Procès-Verbaux de la Commission temporaire des arts (2 Vols). Paris: Imprimerie nationale.

    Google Scholar 

  • Van Helden, A., & Henkins, T. L. (Eds.). (1994). Instruments in the history of science. Special issue of Osiris 9.

    Google Scholar 

  • Watson, G. N. (1966). A treatise of the theory of Bessel functions (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics, 13, 1–14.

    Google Scholar 

  • Wise, G. (2004). Civic astronomy: Albany’s Dudley Observatory, 1852–2002. Astrophysics and Space Science Library, Dordrecht: Kluwer.

    Book  Google Scholar 

  • Wise, M. N. (Ed.). (1995). The values of precision. Princeton: Princeton University Press.

    Google Scholar 

  • Withold, T. (2006). Lost on the way from Frege to Carnap: How the philosophy of science forgot the applicability problem. Grazer Philosophische Studien, 73, 62–82.

    Google Scholar 

  • Wolf, C. (1902). Histoire de l’Observatoire de Paris de sa foundation à 1793. Paris: Gauthier-Villars.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Aubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aubin, D. (2017). On the Epistemic and Social Foundations of Mathematics as Tool and Instrument in Observatories, 1793–1846. In: Lenhard, J., Carrier, M. (eds) Mathematics as a Tool. Boston Studies in the Philosophy and History of Science, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-54469-4_10

Download citation

Publish with us

Policies and ethics