Skip to main content

Pharmacological Approaches for Delineating Functions of AKAP-Based Signalling Complexes and Finding Therapeutic Targets

  • Chapter
  • First Online:
Microdomains in the Cardiovascular System

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 3))

Abstract

A-kinase anchoring proteins (AKAPs) comprise a family of scaffolding proteins that direct their interacting partners to defined cellular compartments. The interacting partners can comprise all proteins of canonical cAMP signalling: protein kinase A (PKA), PKA substrates, adenylyl cyclases, phosphodiesterases (PDEs) and protein phosphatases. AKAPs are central for compartmentalising these components and thus for achieving specificity of cAMP signalling cascades. Since AKAPs can additionally bind proteins of other signalling cascades, they constitute nodes for the integration of cellular signalling. Although general functions have been ascribed to several AKAPs, a detailed understanding of the roles of most of their individual protein-protein interactions is lacking. In particular, knowledge of the functions of individual AKAP-PKA interactions is scarce, as they are mediated by conserved domains and difficult to disrupt selectively. In this article, we will discuss pharmacological agents for interference with individual protein-protein interactions of AKAPs. We will mainly focus on recent progress in targeting AKAP-PKA interactions. Since AKAP-directed signalling is dysregulated in some diseases, such agents may be suitable for validating AKAPs as potential drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

AKAP:

A-kinase anchoring protein

AKB:

A-kinase-binding domain

D/D domain:

Docking/dimerisation domain of PKA

Epac:

Exchange proteins directly activated by cAMP

PDE:

Phosphodiesterase

PKA:

cAMP-dependent protein kinase A

STAD:

Stapled anchoring disruptor

References

  • Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276. doi:10.1016/j.cmet.2009.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J, Degerman E, Goetz F, Klussmann E, Movsesian M, Manganiello V (2015) Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 290:6763–6776. doi:10.1074/jbc.M115.638585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD (2003) Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci U S A 100:4445. doi:10.1073/pnas.0330734100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D (2007) The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104:10140–10145. doi:10.1073/pnas.0701099104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aye TT, Soni S, van Veen TAB, van der Heyden MAG, Cappadona S, Varro A, de Weger RA, de Jonge N, Vos MA, Heck AJR, Scholten A (2012) Reorganized PKA-AKAP associations in the failing human heart. J Mol Cell Cardiol 52:511–518. doi:10.1016/j.yjmcc.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJO, Warwicker J, Houslay MD (2002) TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem 277:28298–28309. doi:10.1074/jbc.M108353200

    Article  CAS  PubMed  Google Scholar 

  • Banky P, Roy M, Newlon MG, Morikis D, Haste NM, Taylor SS, Jennings PA (2003) Related protein–protein interaction modules present drastically different surface topographies despite a conserved helical platform. J Mol Biol 330:1117–1129. doi:10.1016/S0022-2836(03)00552-7

    Article  CAS  PubMed  Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702. doi:10.1016/j.febslet.2013.04.031

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520. doi:10.1124/pr.58.3.5

    Article  CAS  PubMed  Google Scholar 

  • Berrera M, Dodoni G, Monterisi S, Pertegato V, Zamparo I, Zaccolo M (2008) A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 186:285–298. doi:10.1007/978-3-540-72843-6_12

    Article  CAS  Google Scholar 

  • Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191:111–136. doi:10.1007/978-3-540-68964-5_7

    Article  CAS  Google Scholar 

  • Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA (1997) Troponin I phosphorylation in the normal and failing adult human heart. Circulation 96:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577. doi:10.1016/j.addr.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  • Burgers PP, Ma Y, Margarucci L, Mackey M, van der Heyden MAG, Ellisman M, Scholten A, Taylor SS, Heck AJR (2012) A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem 287:43789–43797. doi:10.1074/jbc.M112.395970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgers PP, Bruystens J, Burnley RJ, Nikolaev VO, Keshwani M, Wu J, Janssen BJC, Taylor SS, Heck AJR, Scholten A (2016) Structure of smAKAP and its regulation by PKA-mediated phosphorylation. FEBS J 283(11):2132–2148. doi:10.1111/febs.13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns-Hamuro LL, Ma Y, Kammerer S, Reineke U, Self C, Cook C, Olson GL, Cantor CR, Braun A, Taylor SS (2003) Designing isoform-specific peptide disruptors of protein kinase A localization. Proc Natl Acad Sci 100:4072–4077. doi:10.1073/pnas.2628038100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burzicki G, Voisin-Chiret AS, Sopkovà-de Oliveira Santos J, Rault S (2009) Synthesis of dihalo bi- and terpyridines by regioselective Suzuki–Miyaura cross-coupling reactions. Tetrahedron 65:5413–5417. doi:10.1016/j.tet.2009.04.049

    Article  CAS  Google Scholar 

  • Cadd G, Stanley McKnight G (1989) Distinct patterns of cAMP-dependent protein kinase gene expression in mouse brain. Neuron 3:71–79. doi:10.1016/0896-6273(89)90116-5

    Article  CAS  PubMed  Google Scholar 

  • Cadd GG, Uhler MD, McKnight GS (1990) Holoenzymes of cAMP-dependent protein kinase containing the neural form of type I regulatory subunit have an increased sensitivity to cyclic nucleotides. J Biol Chem 265:19502–19506

    CAS  PubMed  Google Scholar 

  • Cann M (2004) Bicarbonate stimulated adenylyl cyclases. IUBMB Life 56:529–534. doi:10.1080/15216540400013861

    Article  CAS  PubMed  Google Scholar 

  • Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD (2004) PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J 381:587–592. doi:10.1042/BJ20040846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson CR, Ruppelt A, Taskén K (2003) A kinase anchoring protein (AKAP) interaction and dimerization of the RIα and RIβ regulatory subunits of protein kinase A in vivo by the yeast two hybrid system. J Mol Biol 327:609–618. doi:10.1016/S0022-2836(03)00093-7

    Article  CAS  PubMed  Google Scholar 

  • Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, Taskén K, Scott JD (2006) Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. J Biol Chem 281:21535–21545. doi:10.1074/jbc.M603223200

    Article  CAS  PubMed  Google Scholar 

  • Carnegie GK, Burmeister BT (2011) A-kinase anchoring proteins that regulate cardiac remodeling. J Cardiovasc Pharmacol 58:451–458. doi:10.1097/FJC.0b013e31821c0220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnegie GK, Soughayer J, Smith FD, Pedroja BS, Zhang F, Diviani D, Bristow MR, Kunkel MT, Newton AC, Langeberg LK, Scott JD (2008) AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell 32:169–179. doi:10.1016/j.molcel.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266:14188–14192

    CAS  PubMed  Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Cone RD, Scott JD (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem 267:16816–16823

    CAS  PubMed  Google Scholar 

  • Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled α−helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110:E3445. doi:10.1073/pnas.1303002110

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lin RY, Rubin CS (1997) Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem 272:15247–15257

    Article  CAS  PubMed  Google Scholar 

  • Christian F, Szaszák M, Friedl S, Drewianka S, Lorenz D, Goncalves A, Furkert J, Vargas C, Schmieder P, Götz F, Zühlke K, Moutty M, Göttert H, Joshi M, Reif B, Haase H, Morano I, Grossmann S, Klukovits A, Verli J, Gáspár R, Noack C, Bergmann M, Kass R, Hampel K, Kashin D, Genieser H-G, Herberg FW, Willoughby D, Cooper DMF, Baillie GS, Houslay MD, von Kries JP, Zimmermann B, Rosenthal W, Klussmann E (2011) Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 286:9079. doi:10.1074/jbc.M110.160614

    Article  CAS  PubMed  Google Scholar 

  • Chu Q, Moellering RE, Hilinski GJ, Kim YW, Grossmann TN, Yeh JTH, Verdine GL (2015) Towards understanding cell penetration by stapled peptides. Med Chem Comm 6:111–119. doi:10.1039/C4MD00131A

    Article  CAS  Google Scholar 

  • Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386. doi:10.1126/science.7529940

    Article  CAS  PubMed  Google Scholar 

  • Clegg CH, Cadd GG, McKnight GS (1988) Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 85:3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267:108–111

    Article  CAS  PubMed  Google Scholar 

  • Colson BA, Patel JR, Chen PP, Bekyarova T, Abdalla MI, Tong CW, Fitzsimons DP, Irving TC, Moss RL (2012) Myosin binding protein-C phosphorylation is the principal mediator of protein kinase A effects on thick filament structure in myocardium. J Mol Cell Cardiol 53:609–616. doi:10.1016/j.yjmcc.2012.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147. doi:10.1111/cbdd.12055

    Article  CAS  PubMed  Google Scholar 

  • Deak VA, Klussmann E (2015) Pharmacological interference with protein-protein interactions of A-kinase anchoring proteins as a strategy for the treatment of disease. Curr Drug Targets 17(10):1147–1171

    Article  Google Scholar 

  • Deák VA, Skroblin P, Dittmayer C, Knobeloch KP, Bachmann S, Klussmann E (2016) The A-kinase anchoring protein GSKIP regulates GSK3β activity and controls palatal shelf fusion in mice. J Biol Chem 291:681–690. doi:10.1074/jbc.M115.701177

    Article  CAS  PubMed  Google Scholar 

  • Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22. doi:10.2174/1875397300903010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dema A, Perets E, Schulz MS, Deák VA, Klussmann E (2015) Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 27:2474–2487. doi:10.1016/j.cellsig.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  • Dema A, Schröter MF, Perets E, Skroblin P, Moutty MC, Deàk VA, Birchmeier W, Klussmann E (2016) The A-kinase anchoring protein (AKAP) glycogen synthase kinase 3β interaction protein (GSKIP) regulates β-catenin through its interactions with both protein kinase A (PKA) and GSK3β. J Biol Chem 291:19618–19630. doi:10.1074/jbc.M116.738047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  • Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 301:H1742–H1753. doi:10.1152/ajpheart.00569.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dostmann WRG, Taylor SS (1991) Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry (Mosc) 30:8710–8716. doi:10.1021/bi00099a032

    Article  CAS  Google Scholar 

  • Fancy SPJ, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJM, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. doi:10.1101/gad.1806309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque OM, Le-Nguyen D, Lajoix A-D, Vives E, Petit P, Bataille D, Hani E-H (2009) Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring. Am J Physiol Cell Physiol 296:C306–C316. doi:10.1152/ajpcell.00216.2008

    Article  CAS  PubMed  Google Scholar 

  • Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron DS, Bond M (2001) AKAP-mediated targeting of protein kinase A regulates contractility in cardiac myocytes. Circ Res 88:291–297. doi:10.1161/01.RES.88.3.291

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Rossmann M, Hyvönen M (2015) Alternative modulation of protein–protein interactions by small molecules. Curr Opin Biotechnol 35:78–85. doi:10.1016/j.copbio.2015.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaherty BR, Wang Y, Trope EC, Ho TG, Muralidharan V, Kennedy EJ, Peterson DS (2015) The stapled AKAP disruptor peptide STAD-2 displays antimalarial activity through a PKA-independent mechanism. PLoS One 10:e0129239. doi:10.1371/journal.pone.0129239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furusawa M, Ohnishi T, Taira T, Iguchi-Ariga SM, Ariga H (2001) AMY-1, a c-Myc-binding protein, is localized in the mitochondria of sperm by association with S-AKAP84, an anchor protein of cAMP-dependent protein kinase. J Biol Chem 276:36647–36651. doi:10.1074/jbc.M103885200

    Article  CAS  PubMed  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840. doi:10.1074/jbc.M007540200

    Article  CAS  PubMed  Google Scholar 

  • Gamm DM, Baude EJ, Uhler MD (1996) The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo. J Biol Chem 271:15736–15742. doi:10.1074/jbc.271.26.15736

    Article  CAS  PubMed  Google Scholar 

  • Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50:355–375. doi:10.1146/annurev.pharmtox.010909.105714

    Article  CAS  PubMed  Google Scholar 

  • Gold MG, Lygren B, Dokurno P, Hoshi N, McConnachie G, Taskén K, Carlson CR, Scott JD, Barford D (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24:383–395. doi:10.1016/j.molcel.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Gold MG, Fowler DM, Means CK, Pawson CT, Stephany JJ, Langeberg LK, Fields S, Scott JD (2013) Engineering A-kinase anchoring protein (AKAP)-selective regulatory subunits of protein kinase A (PKA) through structure-based phage selection. J Biol Chem 288:17111. doi:10.1074/jbc.M112.447326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680. doi:10.1016/0092-8674(89)90013-5

    Article  CAS  PubMed  Google Scholar 

  • Götz F, Roske Y, Schulz MS, Autenrieth K, Bertinetti D, Faelber K, Zühlke K, Kreuchwig A, Kennedy E, Krause G, Daumke O, Herberg FW, Heinemann U, Klussmann E (2016) AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem J 473(13):1881–1894. doi:10.1042/BCJ20160242

    Article  CAS  PubMed  Google Scholar 

  • Gray PC, Scott JD, Catterall WA (1998) Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr Opin Neurobiol 8:330–334. doi:10.1016/S0959-4388(98)80057-3

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24:2546–2554. doi:10.1016/j.bmcl.2014.03.095

    Article  CAS  PubMed  Google Scholar 

  • Haghighi K, Bidwell P, Kranias EG (2014) Phospholamban interactome in cardiac contractility and survival: a new vision of an old friend. J Mol Cell Cardiol 77:160–167. doi:10.1016/j.yjmcc.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  • Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289. doi:10.1016/S0008-6363(97)00277-0

    Article  CAS  PubMed  Google Scholar 

  • Herberg FW, Maleszka A, Eide T, Vossebein L, Tasken K (2000) Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. J Mol Biol 298:329–339. doi:10.1006/jmbi.2000.3662

    Article  CAS  PubMed  Google Scholar 

  • Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (1997a) Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem 272:8057–8064. doi:10.1074/jbc.272.12.8057

    Article  CAS  PubMed  Google Scholar 

  • Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (1997b) D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc Natl Acad Sci U S A 94:11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LJ, Wang L, Ma Y, Durick K, Perkins G, Deerinck TJ, Ellisman MH, Taylor SS (1999) NH2-terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum. J Cell Biol 145:951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, McDonough CB, Abel T (2006) Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. Eur J Cell Biol 85:635. doi:10.1016/j.ejcb.2006.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme JT, Lin TWC, Westenbroek RE, Scheuer T, Catterall WA (2003) β-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci 100:13093–13098. doi:10.1073/pnas.2135335100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme JT, Westenbroek RE, Scheuer T, Catterall WA (2006) Phosphorylation of serine 1928 in the distal C-terminal domain of cardiac CaV1.2 channels during beta1-adrenergic regulation. Proc Natl Acad Sci U S A 103:16574–16579. doi:10.1073/pnas.0607294103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundsrucker C, Klussmann E (2008) Direct AKAP-mediated protein-protein interactions as potential drug targets. Handb Exp Pharmacol 186:483–503

    Google Scholar 

  • Hundsrucker C, Skroblin P, Christian F, Zenn H-M, Popara V, Joshi M, Eichhorst J, Wiesner B, Herberg FW, Reif B, Rosenthal W, Klussmann E (2010) Glycogen synthase kinase 3β interaction protein functions as an A-kinase anchoring protein. J Biol Chem 285:5507–5521. doi:10.1074/jbc.M109.047944

    Article  CAS  PubMed  Google Scholar 

  • Huston E, Gall I, Houslay TM, Houslay MD (2006) Helix-1 of the cAMP-specific phosphodiesterase PDE4A1 regulates its phospholipase-D-dependent redistribution in response to release of Ca2+. J Cell Sci 119:3799–3810. doi:10.1242/jcs.03106

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Iwatsubo K, Tsunematsu T, Okumura S (2005) Genetic manipulation and functional analysis of cAMP signalling in cardiac muscle: implications for a new target of pharmacotherapy. Biochem Soc Trans 33:1337–1340. doi:10.1042/BST0331337

    Article  CAS  PubMed  Google Scholar 

  • Jahnsen T, Hedin L, Lohmann SM, Walter U, Richards JS (1986) The neural type II regulatory subunit of cAMP-dependent protein kinase is present and regulated by hormones in the rat ovary. J Biol Chem 261:6637–6639

    CAS  PubMed  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A 93:295–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114:3167–3176

    CAS  PubMed  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824. doi:10.1152/physrev.00008.2002

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279. doi:10.1126/science.282.5397.2275

    Article  CAS  PubMed  Google Scholar 

  • Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong N-H, Jennings PA, Taylor SS (2006) A novel and dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 24:397–408. doi:10.1016/j.molcel.2006.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klussmann E (2016) Protein–protein interactions of PDE4 family members—functions, interactions and therapeutic value. Cell Signal 28:713–718. doi:10.1016/j.cellsig.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  • Kovanich D, van der Heyden MAG, Aye TT, van Veen TAB, Heck AJR, Scholten A (2010) Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase. Chembiochem Eur J Chem Biol 11:963–971. doi:10.1002/cbic.201000058

    Article  CAS  Google Scholar 

  • Kranias EG, Bers DM (2007) Calcium and cardiomyopathies. Subcell Biochem 45:523–537

    Article  CAS  PubMed  Google Scholar 

  • Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660. doi:10.1161/CIRCRESAHA.111.259754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa J, Motoike HK, Rao J, Kass RS (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A 101:16374–16378. doi:10.1073/pnas.0405583101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagane B, Garcia-Perez J, Kellenberger E (2013) Modeling the allosteric modulation of CCR5 function by Maraviroc. Drug Discov Today Technol 10:e297–e305. doi:10.1016/j.ddtec.2012.07.011

    Article  PubMed  Google Scholar 

  • Lee DC, Carmichael DF, Krebs EG, McKnight GS (1983) Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 80:3608–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Negro A, Lopez J, Bauman AL, Henson E, Dodge-Kafka K, Kapiloff MS (2010) The mAKAPβ scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin. J Mol Cell Cardiol 48:387. doi:10.1016/j.yjmcc.2009.10.023

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen L, Kass RS, Dessauer CW (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 287:29815–29824. doi:10.1074/jbc.M112.380568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Chou CH, Howng SL, Hsu CY, Hwang CC, Wang C, Hsu CM, Hong YR (2009) GSKIP, an inhibitor of GSK3beta, mediates the N-cadherin/beta-catenin pool in the differentiation of SH-SY5Y cells. J Cell Biochem 108:1325–1336. doi:10.1002/jcb.22362

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular Cell Biology, 4th edition. Chapter 20.6 Second Messengers. New York: W.H. Freeman. ISBN-10: 0-7167-3136-3

    Google Scholar 

  • Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Taskén K, Klussmann E (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8:1061. doi:10.1038/sj.embor.7401081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577. doi:10.1038/nrm1151

    Article  CAS  PubMed  Google Scholar 

  • MacLennan DH, Asahi M, Tupling AR (2003) The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci 986:472–480

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736. doi:10.1038/nrmicro3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauban JRH, O’Donnell M, Warrier S, Manni S, Bond M (2009) AKAP-scaffolding proteins and regulation of cardiac physiology. Physiology (Bethesda) 24:78–87. doi:10.1152/physiol.00041.2008

    Article  CAS  Google Scholar 

  • McConnell BK, Popovic Z, Mal N, Lee K, Bautista J, Forudi F, Schwartzman R, Jin JP, Penn M, Bond M (2009) Disruption of protein kinase A interaction with A-kinase-anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase A phosphorylation, and troponin I proteolysis. J Biol Chem 284:1583–1592. doi:10.1074/jbc.M806321200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Mol Biol 6:222–227. doi:10.1038/6663

    Article  CAS  Google Scholar 

  • Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20:1651. doi:10.1093/emboj/20.7.1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107:747–756. doi:10.1161/CIRCRESAHA.109.216127

    Article  CAS  PubMed  Google Scholar 

  • Nystoriak MA, Nieves-Cintrón M, Nygren PJ, Hinke SA, Nichols CB, Chen C-Y, Puglisi JL, Izu LT, Bers DM, Dell’acqua ML, Scott JD, Santana LF, Navedo MF (2014) AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res 114:607–615. doi:10.1161/CIRCRESAHA.114.302168

    Article  CAS  PubMed  Google Scholar 

  • Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55:261–275. doi:10.1016/j.neuron.2007.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otvos L, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62. doi:10.3389/fchem.2014.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannekoek W-J, Kooistra MRH, Zwartkruis FJT, Bos JL (2009) Cell–cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta 1788:790–796. doi:10.1016/j.bbamem.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  • Pannekoek WJ, Linnemann JR, Brouwer PM, Bos JL, Rehmann H (2013) Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS One 8:e57903. doi:10.1371/journal.pone.0057903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pare GC, Bauman AL, McHenry M, Michel JJC, Dodge-Kafka KL, Kapiloff MS (2005) The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci 118:5637–5646. doi:10.1242/jcs.02675

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Soler N, Beaulieu V, Litvin TN, Silva ND, Chen Y, Brown D, Buck J, Levin LR, Breton S (2003) Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278:49523–49529. doi:10.1074/jbc.M309543200

    Article  CAS  PubMed  Google Scholar 

  • Patel HH, Hamuro LL, Chun BJ, Kawaraguchi Y, Quick A, Rebolledo B, Pennypacker J, Thurston J, Rodriguez-Pinto N, Self C, Olson G, Insel PA, Giles WR, Taylor SS, Roth DM (2010) Disruption of protein kinase A localization using a trans-activator of transcription (TAT)-conjugated A-kinase-anchoring peptide reduces cardiac function. J Biol Chem 285:27632. doi:10.1074/jbc.M110.146589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K (2011) Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 30:4371. doi:10.1038/emboj.2011.365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M (2014) A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 171:5603–5623. doi:10.1111/bph.12882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen JB, Andersen KR, Kjær KH, Vestergaard AL, Justesen J, Martensen PM (2012) Characterization of human phosphodiesterase 12 and identification of a novel 2′-5′ oligoadenylate nuclease—the ectonucleotide pyrophosphatase/phosphodiesterase 1. Biochimie 94:1098–1107. doi:10.1016/j.biochi.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  • Rehmann H (2006) Characterization of the activation of the Rap-specific exchange factor Epac by cyclic nucleotides. Methods Enzymol 407:159–173.

    Google Scholar 

  • de Rooij J, Zwartkruis FJT, Verheijen MHG, Cool RH, Nijman SMB, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477. doi:10.1038/24884

    Article  CAS  PubMed  Google Scholar 

  • Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, Pasquier F, Valle VD, Secardin L, Leroy G, Mahfoudhi E, Grosjean S, Droin N, Diop M, Dessen P, Charrier S, Palazzo A, Merlevede J, Meniane JC, Delaunay-Darivon C, Fuseau P, Isnard F, Casadevall N, Solary E, Debili N, Bernard OA, Raslova H, Najman A, Vainchenker W, Bellanné-Chantelot C, Plo I (2015) Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet 47:1131–1140. doi:10.1038/ng.3380

    Article  CAS  PubMed  Google Scholar 

  • Sarma GN, Kinderman FS, Kim C, von Daake S, Chen L, Wang B-C, Taylor SS (2010) Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity. Struct Lond Engl 1993(18):155–166. doi:10.1016/j.str.2009.12.012

    Article  CAS  Google Scholar 

  • Sassi Y, Ahles A, Truong DJ, Baqi Y, Lee SY, Husse B, Hulot JS, Foinquinos A, Thum T, Müller CE, Dendorfer A, Laggerbauer B, Engelhardt S (2014) Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J Clin Invest 124:5385–5397. doi:10.1172/JCI74349

    Article  PubMed  PubMed Central  Google Scholar 

  • Schächterle C, Christian F, Fernandes J, Klussmann E (2015) Screening for small molecule disruptors of AKAP–PKA interactions. In: Zaccolo M (ed) cAMP signaling, methods in molecular biology. Springer, New York, pp 151–166

    Google Scholar 

  • Schäfer G, Milić J, Eldahshan A, Götz F, Zühlke K, Schillinger C, Kreuchwig A, Elkins JM, Abdul Azeez KR, Oder A, Moutty MC, Masada N, Beerbaum M, Schlegel B, Niquet S, Schmieder P, Krause G, von Kries JP, Cooper DMF, Knapp S, Rademann J, Rosenthal W, Klussmann E (2013) Highly functionalized terpyridines as competitive inhibitors of AKAP–PKA interactions. Angew Chem Int Ed 52:12187–12191. doi:10.1002/anie.201304686

    Article  CAS  Google Scholar 

  • Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the Helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892. doi:10.1021/ja000563a

    Article  CAS  Google Scholar 

  • Scott JD, Glaccum MB, Zoller MJ, Uhler MD, Helfman DM, McKnight GS, Krebs EG (1987) The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc Natl Acad Sci U S A 84:5192–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov. doi:10.1038/nrd.2016.29

    Article  PubMed  Google Scholar 

  • Shabb JB (2001) Physiological substrates of cAMP-dependent protein kinase. Chem Rev 101:2381–2412. doi:10.1021/cr000236l

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh P, Vaira D, Torheim EA, Rahmouni S, Taskén K, Moutschen M (2014) The RIAD peptidomimetic inhibits HIV-1 replication in humanized NSG mice. Eur J Clin Investig 44:146–152. doi:10.1111/eci.12200

    Article  CAS  Google Scholar 

  • Siu YT, Jin DY (2007) CREB—a real culprit in oncogenesis. FEBS J 274:3224–3232. doi:10.1111/j.1742-4658.2007.05884.x

    Article  CAS  PubMed  Google Scholar 

  • Skalhegg BS, Tasken K (2000) Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci J Virtual Libr 5:D678–D693

    CAS  Google Scholar 

  • Skroblin P, Grossmann S, Schäfer G, Rosenthal W, Klussmann E (2010) Chapter five—mechanisms of protein kinase A anchoring. In: Jeon K (ed) International review of cell and molecular biology. Academic Press, New York, pp 235–330

    Google Scholar 

  • Smith MC, Gestwicki JE (2012) Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16. doi:10.1017/erm.2012.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni S, Scholten A, Vos MA, Veen TAB (2014) Anchored protein kinase A signalling in cardiac cellular electrophysiology. J Cell Mol Med 18:2135–2146. doi:10.1111/jcmm.12365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7(333):ra66. doi:10.1126/scisignal.2005052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steegborn C (2014) Structure, mechanism, and regulation of soluble adenylyl cyclases—similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta 1842(12 Pt B):2535–2547. doi:10.1016/j.bbadis.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol 18:199–212. doi:10.1681/ASN.2006020132

    Article  CAS  PubMed  Google Scholar 

  • Subrizi A, Tuominen E, Bunker A, Róg T, Antopolsky M, Urtti A (2012) Tat(48–60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release Off J Control Release Soc 158:277–285. doi:10.1016/j.jconrel.2011.11.007

    Article  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1092

    CAS  PubMed  Google Scholar 

  • Szaszak M, Christian F, Rosenthal W, Klussmann E (2008) Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 20:590–601

    Article  CAS  PubMed  Google Scholar 

  • Taglieri DM, Johnson KR, Burmeister BT, Monasky MM, Spindler MJ, DeSantiago J, Banach K, Conklin BR, Carnegie GK (2014) The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy. J Mol Cell Cardiol 66:27–40. doi:10.1016/j.yjmcc.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  • Tavalin SJ (2008) AKAP79 selectively enhances protein kinase C regulation of GluR1 at a Ca2+-calmodulin-dependent protein kinase II/protein kinase C site. J Biol Chem 283:11445–11452. doi:10.1074/jbc.M709253200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SS, Ilouz R, Zhang P, Kornev AP (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13:646. doi:10.1038/nrm3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834:1271. doi:10.1016/j.bbapap.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terato K, Do CT, Cutler D, Waritani T, Shionoya H (2014) Preventing intense false positive and negative reactions attributed to the principle of ELISA to re-investigate antibody studies in autoimmune diseases. J Immunol Methods 407:15–25. doi:10.1016/j.jim.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  • Torheim EA, Jarnæss E, Lygren B, Taskén K (2009) Design of proteolytically stable RI-anchoring disruptor peptidomimetics for in vivo studies of anchored type I protein kinase A-mediated signalling. Biochem J 424:69–78. doi:10.1042/BJ20090933

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY, Bacskai BJ, Adams SR (1993) FRET for studying intracellular signalling. Trends Cell Biol 3:242–245. doi:10.1016/0962-8924(93)90124-J

    Article  CAS  PubMed  Google Scholar 

  • Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017. doi:10.1074/jbc.272.25.16010

    Article  PubMed  Google Scholar 

  • Vukićević T, Schulz M, Faust D, Klussmann E (2016) The trafficking of the water channel aquaporin-2 in renal principal cells-a potential target for pharmacological intervention in cardiovascular diseases. Front Pharmacol 7:23. doi:10.3389/fphar.2016.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466. doi:10.1126/science.1099191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    CAS  PubMed  Google Scholar 

  • Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E, Mo GCH, Schendowich LP, Sukhu A, Spelts RC, Zhang J, Herberg FW, Kennedy EJ (2014) Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 9:635–642. doi:10.1021/cb400900r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ (2015) PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 10:1502–1510. doi:10.1021/acschembio.5b00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler J, Choi YH, Krall J, Ahmad F, Manganiello VC, Movsesian MA (2002) Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem 277:38072–38078. doi:10.1074/jbc.M203647200

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XHT, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103:511–518. doi:10.1073/pnas.0510113103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss S, Oz S, Benmocha A, Dascal N (2013) Regulation of cardiac L-type Ca2+ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 113:617–631. doi:10.1161/CIRCRESAHA.113.301781

    Article  CAS  PubMed  Google Scholar 

  • Wetzel CH, Spehr M, Hatt H (2001) Phosphorylation of voltage-gated ion channels in rat olfactory receptor neurons. Eur J Neurosci 14:1056–1064

    Article  CAS  PubMed  Google Scholar 

  • White BD, Chien AJ, Dawson DW (2012) Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219–232. doi:10.1053/j.gastro.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  • Willoughby D, Cooper DMF (2008) Live-cell imaging of cAMP dynamics. Nat Methods 5:29–36. doi:10.1038/nmeth1135

    Article  CAS  PubMed  Google Scholar 

  • Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, Storm DR (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci 92:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Brown SHJ, von Daake S, Taylor SS (2007) PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318:274. doi:10.1126/science.1146447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715. doi:10.1126/science.1069982

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29. doi:10.1038/71345

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Malik S, Kelley GG, Kapiloff MS, Smrcka AV (2011) Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 286:23012–23021. doi:10.1074/jbc.M111.231993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Patriarchi T, Stein IS, Qian H, Matt L, Nguyen M, Xiang YK, Hell JW (2013) Adenylyl cyclase anchoring by a kinase anchor protein AKAP5 (AKAP79/150) is important for postsynaptic β-adrenergic signaling. J Biol Chem 288:17918–17931. doi:10.1074/jbc.M112.449462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Else Kröner-Fresenius-Stiftung (2013_A145), the German-Israeli Foundation (G.I.F. I-1210-286.13/2012), the German Centre for Cardiovascular Research (DZHK 81X210012) and the Deutsche Forschungsgemeinschaft (DFG KL1415/7-1) to E. K.

Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Klussmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schrade, K., Klussmann, E. (2017). Pharmacological Approaches for Delineating Functions of AKAP-Based Signalling Complexes and Finding Therapeutic Targets. In: Nikolaev, V., Zaccolo, M. (eds) Microdomains in the Cardiovascular System. Cardiac and Vascular Biology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-54579-0_4

Download citation

Publish with us

Policies and ethics