Skip to main content

The When of Systemic Thinking

  • Chapter
  • First Online:
Systemic Decision Making

Part of the book series: Topics in Safety, Risk, Reliability and Quality ((TSRQ,volume 33))

  • 1854 Accesses

Abstract

The when question of systemic thinking attempts to determine the appropriate time for interacting with our mess in an effort to increase our understanding about it. Recalling the TAO of systemic thinking , we must think before we act on (and observe) our mess. The understanding gained from our thinking informs when (and if) we decide to intervene in our mess. In order to discern the appropriate time for action, we explore two criteria of our messes, its maturity and its stability . These two criteria will first be explored by investigating life cycles and their relevance to the maturity of our mess . We will then explore the phenomena of evolution , as it pertains to both biological systems and to purposeful systems. Then, we will discuss entropy as it relates to evolution. Finally, we develop a framework to address the when as it applies to any efforts at intervention in our mess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashby, W. R. (1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37(1), 125–128. doi:10.1080/00221309.1947.9918144.

    Article  Google Scholar 

  • Beer, S. (1979). The heart of the enterprise. New York: Wiley.

    Google Scholar 

  • Beer, S. (1981). Brain of the firm. Chichester, UK: Wiley.

    Google Scholar 

  • Bertalanffy, Lv. (1968). General system theory: Foundations, development, applications (Revised ed.). New York: George Braziller.

    Google Scholar 

  • Blanchard, B. S. (2004). Systems engineering management (3rd ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  • Boltzmann, L. (1905). The 2nd law of thermodynamics. Dordrecht: Reidel.

    Google Scholar 

  • Cannon, W. (1929). Organization for physiological homeostasis. Physiological Reviews, 9(3), 399–431.

    Google Scholar 

  • Checkland, P. B. (1993). Systems thinking, systems practice. New York: Wiley.

    Google Scholar 

  • Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295(5560), 1664–1669.

    Article  Google Scholar 

  • D’Alembert, J. (1743). Traité de Dynamique. Paris: David l’Ainé.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. New York: Modern Library.

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper & Company.

    Google Scholar 

  • Foerster, H. V. (1960). On self-organizing systems and their environments. In M. Yovits & S. Cameron (Eds.), Self-organizing systems (pp. 30–50). London: Pergamon.

    Google Scholar 

  • Foerster, H. V., & Zopf, G. (Eds.). (1962). Principles of self-organization. New York: Pergamon.

    Google Scholar 

  • Futuyma, D. J. (2005). Evolution. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Gibbs, J. W. (1902). Elementary principles in statistical mechanics: Developed with especial reference to the rational foundation of thermodynamics. New Haven, CT: Yale University Press.

    MATH  Google Scholar 

  • Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3(2), 115–151. doi:10.2307/2400177.

    Article  Google Scholar 

  • Hagiwara, M. (1992). Extended fuzzy cognitive maps. Paper presented at the IEEE International Conference on Fuzzy Systems, San Diego, CA.

    Google Scholar 

  • Heylighen, F., & Joslyn, C. (2003). Cybernetics and second-order cybernetics. In R. A. Meyers (Ed.), Encyclopedia of physical science and technology (3rd ed., pp. 155–169). New York: Academic Press.

    Chapter  Google Scholar 

  • Hitchins, D. K. (1993). A unified systems hypothesis. Systems Practice, 6(6), 613–645. doi:10.1007/BF01059481.

    Article  Google Scholar 

  • Hitchins, D. K. (2007). Systems engineering: A 21st century systems methodology. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Jantsch, E. (1972). Forecasting and the systems approach: A critical survey. Policy Sciences, 3(4), 475–498.

    Article  Google Scholar 

  • Johnson, B. R., & Lam, S. K. (2010). Self-organization, natural selection, and evolution: Cellular hardware and genetic software. BioScience, 60(11), 879–885.

    Article  Google Scholar 

  • Kauffman, S. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.

    Google Scholar 

  • Kurtz, C. F., & Snowden, D. J. (2003). The new dynamics of strategy: Sense-making in a complex-complicated world. IBM Systems Journal, 42(3), 462–483. doi:10.1147/sj.423.0462.

    Article  Google Scholar 

  • Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.

    MATH  Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.

    MATH  Google Scholar 

  • Park, K. S., & Kim, S. H. (1995). Fuzzy cognitive maps considering time relationships. International Journal of Human-Computer Studies, 42, 157–168.

    Article  Google Scholar 

  • Reynolds, W., & Perkins, H. (1977). Engineering thermodynamics (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Sage, A. P., & Armstrong, J. E. (2000). Introduction to systems engineering. Hoboken, NJ: Wiley.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: University of Illinois Press.

    MATH  Google Scholar 

  • Stauffer, D. (1987). Random Boolean networks: Analogy with percolation. Philosophical Magazine, 56(6), 901–916.

    Article  Google Scholar 

  • Varghese, M., & Thorp, J. S. (1988). An analysis of truncated fractal growths in the stability boundaries of three-node swing equations. IEEE Transactions on Circuits and Systems, 35(7), 825–834. doi:10.1109/31.1829.

    Article  MathSciNet  Google Scholar 

  • Wiener, N. (1948). Cybernetics: Or control and communication in the animal and the machine. Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Hester .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hester, P.T., Adams, K.M. (2017). The When of Systemic Thinking. In: Systemic Decision Making. Topics in Safety, Risk, Reliability and Quality, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-54672-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54672-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54671-1

  • Online ISBN: 978-3-319-54672-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics