Skip to main content

Mitochondrial Calcium Uptake in Activation of the Permeability Transition Pore and Cell Death

  • Chapter
  • First Online:
Molecular Basis for Mitochondrial Signaling

Abstract

Mitochondrial permeability transition is a phenomenon of sudden increase in the permeability on the inner membrane in response to excessive calcium accumulation inside the mitochondrial matrix. Permeability transition is caused by the opening of the large nonselective channel – mitochondrial permeability transition pore (mPTP). mPTP opening leads to the depolarization of the mitochondrial membrane and, as a result, to the disruption of the ATP synthesis. Prevention of mPTP is protective against stress induced cell death, which makes it a potentially important pharmacological target. Here we review current opinions regarding the molecular structure of mPTP and mechanisms of its activation by calcium. We discuss the importance of calcium-phosphate interactions in the process of mPTP activation. Further we review recently proposed models of mPTP formation that involve participation of the oligomers of the C subunit of the mitochondrial ATP synthase and discuss potential roles of inorganic polyphosphate and calcium in transition of the C subunit oligomers into mPTP channel. Finally, we review potential physiological roles of mPTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111(29):10580–10585

    Article  ADS  Google Scholar 

  • Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC, Brierley GP (1992) Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Phys 262(6 Pt 2):H1699–H1704

    Google Scholar 

  • Bernardi P, Bonaldo P (2008) Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann N Y Acad Sci 1147:303–311

    Article  ADS  Google Scholar 

  • Bernardi P, Forte M (2015) Commentary: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Front Physiol 6:320

    Article  Google Scholar 

  • Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95(4):1111–1155

    Article  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683

    Article  Google Scholar 

  • Brdiczka D (1991) Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta 1071(3):291–312

    Article  Google Scholar 

  • Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111(9):1237–1247

    Article  Google Scholar 

  • Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264(14):7826–7830

    Google Scholar 

  • Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M (2002) A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. Biochemistry 41(39):11804–11811

    Article  Google Scholar 

  • Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  Google Scholar 

  • Castuma CE, Huang R, Kornberg A, Reusch RN (1995) Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J Biol Chem 270(22):12980–12983

    Article  Google Scholar 

  • Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278(21):19062–19070

    Article  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    Article  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354

    Article  Google Scholar 

  • Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA (2012) Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 23(8):399–406

    Article  Google Scholar 

  • Elustondo PA, Negoda A, Kane CL, Kane DA, Pavlov EV (2015) Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore. Biochim Biophys Acta 1847(2):231–240

    Article  Google Scholar 

  • Elustondo PA, Nichols M, Negoda A, Thirumaran A, Zakharian E, Robertson GS, Pavlov EV (2016) Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Discov 2:16070

    Article  Google Scholar 

  • Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17(10):843–855

    Article  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    Article  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110(15):5887–5892

    Article  ADS  Google Scholar 

  • Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444(1):1–10

    Article  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  ADS  Google Scholar 

  • Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38

    Article  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    Article  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174(1–2):167–172

    Article  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195(2):460–467

    Article  Google Scholar 

  • He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512(1–3):1–7

    Article  ADS  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195(2):453–459

    Article  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195(2):468–477

    Article  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366(1–2):33–50

    Article  Google Scholar 

  • Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89(7):1145–1153

    Article  Google Scholar 

  • Kennedy EP, Lehninger AL (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem 179(2):957–972

    Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304(3):463–470

    Article  Google Scholar 

  • Kinnally KW, Zorov D, Antonenko Y, Perini S (1991) Calcium modulation of mitochondrial inner membrane channel activity. Biochem Biophys Res Commun 176(3):1183–1188

    Article  Google Scholar 

  • Kinnally KW, Lohret TA, Campo ML, Mannella CA (1996) Perspectives on the mitochondrial multiple conductance channel. J Bioenerg Biomembr 28(2):115–123

    Article  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364

    Article  ADS  Google Scholar 

  • Kristian T, Pivovarova NB, Fiskum G, Andrews SB (2007) Calcium-induced precipitate formation in brain mitochondria: composition, calcium capacity, and retention. J Neurochem 102(4):1346–1356

    Article  Google Scholar 

  • Kwong JQ, Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21(2):206–214

    Article  Google Scholar 

  • Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185(8):1481–1486

    Article  Google Scholar 

  • Marcil M, Bourduas K, Ascah A, Burelle Y (2006) Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. Am J Physiol Heart Circ Physiol 290(4):H1549–H1557

    Article  Google Scholar 

  • Martel C, Huynh le H, Garnier A, Ventura-Clapier R, Brenner C (2012) Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem Res Int 2012:213403

    Article  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187(8):1261–1271

    Article  Google Scholar 

  • Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA (2016) Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 49:13–25.

    Google Scholar 

  • Muro C, Grigoriev SM, Pietkiewicz D, Kinnally KW, Campo ML (2003) Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes. Biophys J 84(5):2981–2989

    Article  Google Scholar 

  • Nicholls DG, Chalmers S (2004) The integration of mitochondrial calcium transport and storage. J Bioenerg Biomembr 36(4):277–281

    Article  Google Scholar 

  • Nicotera P, Orrenius S (1998) The role of calcium in apoptosis. Cell Calcium 23(2–3):173–180

    Article  Google Scholar 

  • Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, French RJ (2005) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 88(4):2614–2625

    Article  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76(2):725–734

    Article  Google Scholar 

  • Rodriguez-Enriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 36(12):2463–2472

    Article  Google Scholar 

  • Schonfeld P, Wieckowski MR, Wojtczak L (2000) Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett 471(1):108–112

    Article  Google Scholar 

  • Seebach D, Fritz MG (1999) Detection, synthesis, structure, and function of oligo(3-hydroxyalkanoates): contributions by synthetic organic chemists. Int J Biol Macromol 25(1–3):217–236

    Article  Google Scholar 

  • Shanmughapriya S, Rajan S, Hoffman NE, Higgins AM, Tomar D, Nemani N, Hines KJ, Smith DJ, Eguchi A, Vallem S, Shaikh F, Cheung M, Leonard NJ, Stolakis RS, Wolfers MP, Ibetti J, Chuprun JK, Jog NR, Houser SR, Koch WJ, Elrod JW, Madesh M (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60(1):47–62

    Article  Google Scholar 

  • Smithen M, Elustondo PA, Winkfein R, Zakharian E, Abramov AY, Pavlov E (2013) Role of polyhydroxybutyrate in mitochondrial calcium uptake. Cell Calcium 54(2):86–94

    Article  Google Scholar 

  • Solesio ME, Demirkhanyan L, Zakharian E, Pavlov EV (2016a) Contribution of inorganic polyphosphate towards regulation of mitochondrial free calcium. Biochim Biophys Acta 1860(6):1317–1325

    Article  Google Scholar 

  • Solesio ME, Elustondo PA, Zakharian E, Pavlov EV (2016b) Inorganic polyphosphate (polyP) as an activator and structural component of the mitochondrial permeability transition pore. Biochem Soc Trans 44(1):7–12

    Article  Google Scholar 

  • Szabo I, Zoratti M (1992) The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 24(1):111–117

    Article  Google Scholar 

  • Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267(5):2940–2946

    Google Scholar 

  • Szabo I, De Pinto V, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330(2):206–210

    Article  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548

    Article  Google Scholar 

  • Vyssokikh MY, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50(2):389–404

    Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41(1):1–16

    Article  Google Scholar 

  • Zamzami N, Marzo I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R, Kroemer G (1998) The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16(8):1055–1063

    Article  Google Scholar 

  • Zamzami N, El Hamel C, Maisse C, Brenner C, Munoz-Pinedo C, Belzacq AS, Costantini P, Vieira H, Loeffler M, Molle G, Kroemer G (2000) Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 19(54):6342–6350

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support from the American Heart Association and from the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V. Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Solesio, M.E., Pavlov, E.V. (2017). Mitochondrial Calcium Uptake in Activation of the Permeability Transition Pore and Cell Death. In: Rostovtseva, T. (eds) Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55539-3_4

Download citation

Publish with us

Policies and ethics