Skip to main content

Integration of Reaction Kinetics Theory and Gene Expression Programming to Infer Reaction Mechanism

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

  • 1733 Accesses

Abstract

Mechanistic mathematical models of biomolecular systems have been used to describe biological phenomena in the hope that one day these models may be used to enhance our fundamental understanding of these phenomena, as well as to optimize and engineer biological systems. An evolutionary algorithm capable of formulating mass action kinetic models of biological systems from time series data sets was developed for a system of n-species. The strategy involved using a gene expression programming (GEP) based approach and heuristics based on chemical kinetic theory. The resulting algorithm was successfully validated by recapitulating a nonlinear model of viral dynamics using only a “noisy” set of time series data. While the system analyzed for this proof-of-principle study was relatively small, the approach presented here is easily parallelizable making it amenable for use with larger systems. Additionally, greater efficiencies may potentially be realized by further taking advantage of the problem domain along with future breakthroughs in computing power and algorithmic advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aviran, S., Shah, P.S., Schaffer, D.V., Arkin, A.P.: Computational models of HIV-1 resistance to gene therapy elucidate therapy design principles. PLoS Comput. Biol. 6(8), e1000883 (2010)

    Article  Google Scholar 

  2. Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug therapy and virus load. J. Virol. 71, 3275–3278 (1997)

    Google Scholar 

  3. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. PNAS 94, 6971–6976 (1997)

    Article  Google Scholar 

  4. Burg, D., Rong, L., Neumann, A.U., Dahari, H.: Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theor. Biol. 259, 751–759 (2009)

    Article  MathSciNet  Google Scholar 

  5. Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002)

    Article  Google Scholar 

  6. Prosperi, M.C.F., D’Autilia, R., Incardona, F., De Luca, A., Zazzi, M., et al.: Stochastic modelling of genotypic drug-resistance for human immunodeficiency virus towards long-term combination therapy optimization. Bioinformatics 25, 1040–1047 (2009)

    Article  Google Scholar 

  7. Ribeiro, R.M., Bonhoeffer, S.: Production of resistant HIV mutants during antiretroviral therapy. PNAS 97, 7681–7686 (2000)

    Article  MATH  Google Scholar 

  8. von Kleist, M., Menz, S., Huisinga, W.: Drug-class specific impact of antivirals on the reproductive capacity of HIV. PLoS Comput. Biol. 6, e1000720 (2010)

    Article  Google Scholar 

  9. Sugimoto, M., Kikuchi, S., Tomita, M.: Reverse engineering of biochemical equations from time-course data by means of genetic programming. BioSystems 80, 155–164 (2005)

    Article  Google Scholar 

  10. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)

    Article  Google Scholar 

  11. Chattopadhyay, I., Kuchina, A., Süel, G.M., Lipson, H.: Inverse gillespie for inferring stochastic reaction mechanisms from intermittent samples. PNAS 110(32), 12990–12995 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bazil, J.N., Qi, F., Beard, D.A.: A parallel algorithm for reverse engineering of biological networks. Integr. Biol. 3(12), 1215–1223 (2011)

    Article  Google Scholar 

  13. Koza, J.: Genetic Programming, p. 819. MIT Press, Cambridge (1992)

    Google Scholar 

  14. Iba, H.: Inference of differential equation models by genetic programming. Inf. Sci. 178, 4453–4468 (2008)

    Article  Google Scholar 

  15. Rodriguez-Fernandez, M., Rehberg, M., Banga, J.R.: Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Syst. Biol. 7, 76–89 (2013)

    Article  Google Scholar 

  16. Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLoS Comput. Biol. 6, e1000696 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, C.: Gene Expression Programming, vol. 21. Springer, Heidelberg (2006). 478 p.

    MATH  Google Scholar 

  18. Du, X., et al.: Convergence analysis of gener expression programming based on maintaining elitist. In: Proceedings og the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC 2009), pp. 823–826. ACM, New York (2009)

    Google Scholar 

  19. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218, 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  20. Levenspiel, O.: Chemical Reaction Engineering, 2nd edn. Wiley, New York (1972)

    Google Scholar 

  21. Motulsky, H., Christopoulos, A.: Fitting Models to Biological Data Using Linear and Nonlinear Regression. Oxford University Press, Oxford (2004). 351 p.

    MATH  Google Scholar 

  22. Bautista, E.J., et al.: Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput. Biol. 9(9), 1003208 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1137249 and 1517133.

Supporting Information.

Mathematica source code and instructions are available from http://www.rslabs.org under a BSD open source license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

White, J.R., Srivastava, R. (2017). Integration of Reaction Kinetics Theory and Gene Expression Programming to Infer Reaction Mechanism. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics