Skip to main content

Electric Power System Fault Diagnosis with Membrane Systems

  • Chapter
  • First Online:
Real-life Applications with Membrane Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 25))

  • 669 Accesses

Abstract

Spiking Neural P systems (SN P systems, for short) are used in electric power systems fault diagnostics, by expanding their modeling capabilities with fuzzy theory concepts. The following variants of SN P systems are introduced and investigated: fuzzy reasoning spiking neural P systems with real numbers, weighted fuzzy reasoning spiking neural P systems and fuzzy reasoning spiking neural P systems with trapezoidal fuzzy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cardoso, G., J.G. Rolim, and H.H. Zurn. 2008. Identifying the primary fault section after contingencies in bulk power systems. IEEE Transition on Power Delivery 23 (3): 1335–1342.

    Article  Google Scholar 

  2. Cavaliere, M., O.H. Ibarra, O. Gh Păun, M.Ionescu Egecioglu, and S. Woodworth. 2009. Asynchronous spiking neural P systems. Theoretical Computer Science 410 (24–25): 2352–2364.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, C.S., J.M. Chen, D. Srinivasan, F.S. Wen, and A.C. Liew. 1997. Fuzzy logic approach in power system fault section identification. IEE Proceedings of Generation, Transmission and Distribution 144 (5): 406–414.

    Article  Google Scholar 

  4. Chen, S.M. 1996. A fuzzy reasoning approach for rule-based systems based on fuzzy logics. IEEE Transactions on Systems, Man and Cybernetics, Part B 26 (5): 769–778.

    Article  Google Scholar 

  5. Chen, W.H. 2011. Fault section estimation using fuzzy matrix-based reasoning methods. IEEE Transactions on Power Delivery 26 (1): 205–213.

    Article  Google Scholar 

  6. Chen, W.H. 2012. Online fault diagnosis for power transmission networks using fuzzy digraph models. IEEE Transactions on Power Delivery 27 (2): 688–698.

    Article  Google Scholar 

  7. Chen, H., T.O. Ishdorj, Gh. Păun, and M.J. Pérez-Jiménez. 2006. Handling languages with spiking neural P systems with extended rules. Romanian Journal of Information Science and Technology 9 (3): 151–162.

    Google Scholar 

  8. Chen, S.M., J.S. Ke, and J.F. Chang. 1990. Knowledge representation using fuzzy Petri nets. IEEE Transactions on Knowledge and Data Engineering 2 (3): 311–319.

    Article  Google Scholar 

  9. Chen, W.H., S.H. Tsai, and H.I. Lin. 2011. Fault section estimation for power networks using logic cause-effect models. IEEE Transactions on Power Delivery 26 (2): 963–971.

    Article  Google Scholar 

  10. Chien, C.F., S.L. Chen, and Y.S. Lin. 2002. Using Bayesian network for fault location on distribution feeder. IEEE Transactions on Power Delivery 17 (13): 785–793.

    Article  Google Scholar 

  11. Davidson, E.M., S.D.J. McArthur, J.R. McDonald, and I. Watt. 2006. Applying multi-agent system technology in practice: automated management and analysis of SCADA and digital fault recorder data. IEEE Transactions on Power Systems 21 (2): 559–567.

    Article  Google Scholar 

  12. Freund, R., M. Ionescu, and M. Oswald. 2008. Extended spiking neural P systems with decaying spikes and/or total spiking. International Journal of Foundations of Computer Science 19 (5): 1223–1234.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grzegorzewski, P., and E. Mrowka. 2005. Trapezoidal approximations of fuzzy numbers. Fuzzy Sets and Systems 2005 (153): 115–135.

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, W.X., F.S. Wen, G. Ledwich, Z.W. Liao, X.Z. He, and J.H. Liang. 2010. An analytic model for fault diagnosis in power systems considering malfunctions of protective relays and circuit breakers. IEEE Transactions on Power Delivery 25 (3): 1393–1401.

    Article  Google Scholar 

  15. He, Z.Y., H.D. Chiang, C.W. Li, and Q.F. Zeng. 2009. Fault-section estimation in power systems based on improved optimization model and binary particle swarm optimization. In Proceedings of IEEE Power and Energy Society General Meeting, 1–8.

    Google Scholar 

  16. Hossack, J.A., J. Menal, S.D.J. McArthur, and J.R. McDonald. 2003. A multiagent architecture for protection engineering diagnostic assistance. IEEE Transactions on Power Systems 18 (2): 639–647.

    Article  Google Scholar 

  17. Ionescu, M., Gh. Păun, and T. Yokomori. 2006. Spiking neural P systems. Fundamenta Informaticae 71 (2–3): 279–308.

    Google Scholar 

  18. Lee, H.J., B.S. Ahn, and Y.M. Park. 2000. A fault diagnosis expert system for distribution substations. IEEE Transactions on Power Delivery 15 (1): 92–97.

    Google Scholar 

  19. Lin, X.N., S.H. Ke, Z.T. Li, H.L. Weng, and X.H. Han. 2010. A fault diagnosis method of power systems based on improved objective function and genetic algorithm-tabu search. IEEE Transactions on Power Delivery 25 (3): 1268–1274.

    Article  Google Scholar 

  20. Lin, S., Z.Y. He, and Q.Q. Qian. 2010. Review and development on fault diagnosis in power grid. Power System Protection and Control 38 (4): 140–150.

    Google Scholar 

  21. Liu, H.C., L. Liu, Q.L. Lin, and N. Liu. 2013. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Transactions on Cybernetics 43 (3): 1059–1072.

    Article  Google Scholar 

  22. Luo, X., and M. Kezunovic. 2008. Implementing fuzzy reasoning Petri-nets for fault section estimation. IEEE Transactions on Power Systems 23 (2): 676–685.

    Article  Google Scholar 

  23. Ma, D.Y., Y.C. Liang, X.S. Zhao, R.C. Guan, and X.H. Shi. 2013. Multi-BP expert system for fault diagnosis of power system. Engineering Applications of Artificial Intelligence 26 (3): 937–944.

    Article  Google Scholar 

  24. Marks II, R.J. (ed.). 1994. Fuzzy logic technology and their applications. IEEE: IEEE Technology Update Series.

    MATH  Google Scholar 

  25. Pan, L.Q., and Gh Păun. 2010. Spiking neural P systems: an improved normal form. Theoretical Computer Science 411 (6): 906–918.

    Article  MathSciNet  MATH  Google Scholar 

  26. Păun, Gh, M.J. Pérez-Jiménez, and G. Rozenberg. 2006. Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17 (4): 975–1002.

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng, H., J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, and T. Wang. 2013. Fuzzy reasoning spiking neural P system for fault diagnosis. Information Sciences 235: 106–116.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, J., S.Y. Qin, and Y.H. Song. 2004. Fault diagnosis of electric power systems based on fuzzy Petri nets. IEEE Transactions on Power Systems 19 (4): 2053–2059.

    Article  Google Scholar 

  29. The Matlab Website. http://www.mathworks.es/products/matlab/.

  30. The P-Lingua Website. http://www.p-lingua.org. Research Group on Natural Computing, University of Seville.

  31. The MeCoSim Website. http://www.p-lingua.org/mecosim. Research Group on Natural Computing, University of Seville.

  32. Tang, L., H.B. Sun, B.M. Zhang, and F. Gao. 2003. Online fault diagnosis for power system based on information theory. Proceedings of the Chinese Society for Electrical Engineering 23 (7): 5–11.

    Google Scholar 

  33. Thukaram, D., H.P. Khincha, and H.P. Vijaynarasimha. 2005. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery 20 (2): 710–721.

    Article  Google Scholar 

  34. Tu, M., J. Wang, H. Peng, and P. Shi. 2014. Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems. Chinese Journal of Electronics 23 (1): 87–92.

    Google Scholar 

  35. Wang, J., P. Shi, H. Peng, M.J. Pérez-Jiménez, and T. Wang. 2013. Weighted fuzzy spiking neural P system. IEEE Transactions on Fuzzy Systems 21 (2): 209–220.

    Article  Google Scholar 

  36. Wang, T., J. Wang, H. Peng, and Y. Deng. 2010. Knowledge representation using fuzzy spiking neural P systems. In Proceedings of IEEE Fifth International Conference on Bio-inspired Computing: Theories and Applications, 586–590.

    Google Scholar 

  37. Wang, T., J. Wang, H. Peng, and H. Wang. 2011. Knowledge representation and reasoning based on FRSN P systems. In Proceedings of the 9th World Congress on Intelligent Control and Automation, 255–259.

    Google Scholar 

  38. Wang, T., G.X. Zhang, and M.J. Pérez-Jiménez. 2014. Fault diagnosis models for electric locomotive systems based on Fuzzy Reasoning Spiking Neural P Systems. Lecture Notes in Computer Science. In Membrane Computing (CMC 2014), ed. M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, and C. Zandron, 385–395. Berlin Heidelberg: Springer.

    Google Scholar 

  39. Wang, T., G.X. Zhang, and M.J. Pérez-Jiménez. 2015. Fuzzy membrane computing: theory and applications. International Journal of Computer, Communications and Control 10 (6): 904–935.

    Google Scholar 

  40. Wang, T., G.X. Zhang, M.J. Pérez-Jiménez, and J.X. Cheng. 2015. Weighted fuzzy reasoning spiking neural P systems: application to fault diagnosis in traction power supply systems of high-speed railways. Journal of Computer and Theoretical Nanoscience 12 (7): 1103–1114.

    Article  Google Scholar 

  41. Wang, T., G.X. Zhang, H.N. Rong, and M.J. Pérez-Jiménez. 2014. Application of fuzzy reasoning spiking neural P systems to fault diagnosis. International Journal of Computer, Communications and Control 9 (6): 786–799.

    Article  Google Scholar 

  42. Wang, T., G.X. Zhang, J.B. Zhao, Z.Y. He, J. Wang, and M.J. Pérez-Jiménez. 2015. Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems 30 (3): 1182–1194.

    Article  Google Scholar 

  43. Wen, F.S., and Z.X. Han. 1995. Fault section estimation in power systems using a genetic algorithm. Electric Power Systems Research 34 (3): 165–172.

    Article  Google Scholar 

  44. Wu, S., Z.Y. He, C.H. Qian, and T.L. Zang. 2011. Application of fuzzy Petri net in fault diagnosis of traction power supply system for high-speed railway. Power System Technology 35 (9): 79–85.

    Google Scholar 

  45. Xiong, G.J., D.Y. Shi, L. Zhu, and X.Z. Duan. 2013. A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems, Mathematical Problems in Engineering, 2013, Article ID 815352, 13 p.

    Google Scholar 

  46. Yang, J.W., Z.Y. He, and T.L. Zang. 2010. Power system fault-diagnosis method based on directional weighted fuzzy Petri nets. Proceedings of the Chinese Society for Electrical Engineering 30 (34): 42–49.

    Google Scholar 

  47. Zhang, G.X., H.N. Rong, F. Neri, and M.J. Pérez-Jiménez. 2014. An optimization spiking neural P system for approximately solving combinatorial optimization problems, International Journal of Neural Systems, 24, 5, Article No. 1440006, 16 p.

    Google Scholar 

  48. Zhu, Y.L., L.M. Huo, and J.L. Liu. 2006. Bayesian networks based approach for Power Systems Fault Diagnosis. IEEE Transactions on Power Delivery 21 (2): 634–639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M. (2017). Electric Power System Fault Diagnosis with Membrane Systems. In: Real-life Applications with Membrane Computing. Emergence, Complexity and Computation, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-55989-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55989-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55987-2

  • Online ISBN: 978-3-319-55989-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics