Skip to main content

Information Limits of Optical Microscopy: Application to Fluorescent Labelled Tissue Section

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Included in the following conference series:

  • 1837 Accesses

Abstract

The article demonstrates some less known principles of image build-up in diffractive microscopy and their usage in analysis unravelling the smallest localized information about the original object – an electromagnetic centroid. In fluorescence, the electromagnetic centroid is naturally at the position of the fluorophore. The usage of an information-entropic variable – a point divergence gain – is demonstrated for finding the most localized position of the object’s representation, generally of the size of a voxel (3D pixel). These spatial pixels can be qualitatively classified and used for reconstruction of the 3D structures with precision comparable with electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorn, K.: A quick guide to light microscopy in cell biology. Mol. Biol. Cell 27(2), 219–222 (2016)

    Article  Google Scholar 

  2. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. (Berl.) 330(3), 377–445 (1908)

    Article  MATH  Google Scholar 

  3. Fresnel, A.J.: OEuvres Completes 1. Imprimerie impériale, Paris (1868)

    Google Scholar 

  4. Moerner, W.E.: Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (nobel lecture). Angew. Chem. Int. Ed. 54, 8067–8093 (2015)

    Article  Google Scholar 

  5. Maxwell, J.C.: A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc. Lond. 155, 459–512 (1865)

    Article  Google Scholar 

  6. Rychtáriková, R., Náhlík, T., Shi, K., Malakhova, D., Macháček, P., Smaha, R., Urban, J., Štys, D.: Super-resolved 3-D imaging of live cells organelles from bright-field photon transmission micrographs. (under the revision in Ultramicroscopy) http://arxiv.org/pdf/1608.05962.pdf

  7. Rychtáriková, R., Náhlík, T., Smaha, R., Urban, J., Štys Jr., D., Císař, P., Štys, D.: Multifractality in imaging: application of information entropy for observation of inner dynamics inside of an unlabeled living cell in bright-field microscopy. In: Sanayei, A., Rössler, O.E., Zelinka, I. (eds.) ISCS 2014. ECC, pp. 261–267. Springer, Switzerland (2015)

    Google Scholar 

  8. ftp://160.217.215.251:21/InfoLimits (user: anonymous; password: anonymous)

  9. Štys, D., Náhlík, T., Macháček, P., Rychtáriková, R., Saberioon, M.: Least Information loss (LIL) conversion of digital images and lessons learned for scientific image inspection. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 527–536. Springer, Cham (2016). doi:10.1007/978-3-319-31744-1_47

    Chapter  Google Scholar 

  10. Císař, P., Náhlík, T., Rychtáriková, R., Macháček, P.: Visual exploration of principles of microscopic image intensities formation using image explorer software. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNBI, vol. 9656, pp. 537–544. Springer, Switzerland (2016)

    Google Scholar 

  11. Mizushima, Y.: Detectivity limit of very small objects by video-enhanced microscopy. Appl. Opt. 27(12), 2587–2594 (1988)

    Article  Google Scholar 

  12. Bayer, B.E.: Color Imaging Array. Patent US3971065 A (1975)

    Google Scholar 

  13. Urban, J., Afseth, N.K., Štys, D.: Fundamental definitions and confusions in mass spectrometry about mass assignment, centroiding and resolution. TrAC-Trend. Anal. Chem. 53, 126–136 (2014)

    Article  Google Scholar 

  14. Airy, G.B.: On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc. 5, 283–291 (1835)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – projects CENAKVA (No. CZ.1.05/2.1.00/01.0024), CENAKVA II (No. LO1205 under the NPU I program), The CENAKVA Centre Development (No. CZ.1.05/2.1.00/19.0380) – and by the CZ-A AKTION programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Štys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rychtáriková, R., Steiner, G., Fischer, M.B., Štys, D. (2017). Information Limits of Optical Microscopy: Application to Fluorescent Labelled Tissue Section. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics