Skip to main content

Differential Network Analysis of Anti-sense Regulation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Included in the following conference series:

  • 1801 Accesses

Abstract

A challenging task in systems biology is to decipher cell regulation mechanisms. By comparing networks observed in two different situations, the differential network analysis approach enables to highlight interaction differences that reveal specific cellular responses. The aim of our work is to study the role of natural anti-sense transcription on cellular regulation mechanisms. Our proposal is to build and compare networks obtained from two different sets of actors: the “usual” sense actors on one hand and the sense and anti-sense actors on the other hand. Our study only considers the most significant interactions, called an Extended Core Network; therefore our differential analysis identifies important interactions that are impacted by anti-sense transcription. This paper first introduces our inference method of an Extended Core Network; this method is inspired by C3NET, but whereas C3NET only computes one interaction per gene, we propose to consider the most significant interactions for each gene. Secondly, we define the differential network analysis of two extended core networks inferred with and without anti-sense actors. On a local view, this analysis relies on change motifs that describe which genes have their most important interactions modified when the anti-sense transcripts are considered; they are called AS-impacted genes. Then from a more global view, we consider how the relationships between these AS-impacted genes are rewired in the network with anti-sense actors. Our analysis is performed by computing Steiner trees that represent minimal subnetworks connecting the AS-impacted genes. We show that the visualisation of these results help the biologists to identify interesting parts of the networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(F_1 = 2 \cdot \frac{\text {presicion} \cdot \text {recall}}{\text {precision} + \text {recall}}\).

References

  1. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3(1), 78 (2007)

    Google Scholar 

  2. Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4(1), 132 (2010)

    Article  Google Scholar 

  3. Marbach, D., Costello, J.C., Küffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., Allison, K.R., The DREAM5 Consortium. Kellis, M., Collins, J.J., Stolovitzky, G.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)

    Google Scholar 

  4. Friedel, S., Usadel, B., von Wiren, N., Sreenivasulu, N.: Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. Front. Plant Sci. 3, 294 (2012)

    Article  Google Scholar 

  5. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)

    Article  Google Scholar 

  6. Altay, G., Asim, M., Markowetz, F., Neal, D.E.: Differential C3net reveals disease networks of direct physical interactions. BMC Bioinf. 12(1), 296 (2011)

    Article  Google Scholar 

  7. Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8, 565 (2012)

    Article  Google Scholar 

  8. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

    Article  Google Scholar 

  9. Pelechano, V., Steinmetz, L.M.: Gene regulation by antisense transcription. Nat. Rev. Genet. 14(12), 880–893 (2013)

    Article  Google Scholar 

  10. Yi, H., Richards, E.J.: A cluster of disease resistance genes in arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19(9), 2929–2939 (2007)

    Article  Google Scholar 

  11. Celton, J.M., Gaillard, S., Bruneau, M., Pelletier, S., Aubourg, S., Martin-Magniette, M.L., Navarro, L., Laurens, F., Renou, J.P.: Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytol. 203(1), 287–299 (2014)

    Article  Google Scholar 

  12. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9(1), 559 (2008)

    Article  Google Scholar 

  13. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R.D., Califano, A.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 7(Suppl 1), S7 (2006)

    Article  Google Scholar 

  14. Zhang, X., Liu, K., Liu, Z.P., Duval, B., Richer, J.M., Zhao, X.M., Hao, J.K., Chen, L.: NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics 29(1), 106–113 (2013)

    Article  Google Scholar 

  15. Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinf. 11, 94 (2010)

    Article  Google Scholar 

  16. Qiu, X., Wu, H., Hu, R.: The impact of quantile and rank normalization procedures on the testing power of gene differential expression analysis. BMC Bioinf. 14, 124 (2013)

    Article  Google Scholar 

  17. Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J.: The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl 2), S231–S240 (2002)

    Article  Google Scholar 

  18. Kurt, Z., Aydin, N., Altay, G.: A comprehensive comparison of association estimators for gene network inference algorithms. Bioinformatics 30(15), 2142–2149 (2014)

    Article  Google Scholar 

  19. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

    Article  Google Scholar 

  20. Ma, H.W., Kumar, B., Ditges, U., Gunzer, F., Buer, J., Zeng, A.P.: An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res. 32(22), 6643–6649 (2004)

    Article  Google Scholar 

  21. Guelzim, N., Bottani, S., Bourgine, P., Kèpés, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31(1), 60–63 (2002)

    Article  Google Scholar 

  22. den Bulcke, T.V., Leemput, K.V., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., Moor, B.D., Marchal, K.: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinf. 7(1), 43 (2006)

    Google Scholar 

  23. Legeay, M., Duval, B., Renou, J.-P.: Differential functional analysis and change motifs in gene networks to explore the role of anti-sense transcription. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds.) ISBRA 2016. LNCS, vol. 9683, pp. 117–126. Springer, Cham (2016). doi:10.1007/978-3-319-38782-6_10

    Google Scholar 

  24. Legeay, M., Duval, B., Renou, J.: Inference and differential analysis of extended core networks: a way to study anti-sense regulation. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China, 15–18 December 2016, pp. 284–287 (2016)

    Google Scholar 

  25. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  26. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, US, New York (1972)

    Google Scholar 

  27. Sadeghi, A., Fröhlich, H.: Steiner tree methods for optimal sub-network identification: an empirical study. BMC Bioinf. 14, 144 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the GRIOTE project, funded by the Pays-de-la-Loire Region. We thank the Institut de Recherche en Horticulture et Semences teams for providing micro-array data on apple with sense and anti-sense probes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Duval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Legeay, M., Duval, B., Renou, JP. (2017). Differential Network Analysis of Anti-sense Regulation. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics