Skip to main content

Physiologically Based Pharmacokinetic Modeling of Chemical Mixtures

  • Chapter
  • First Online:
Chemical Mixtures and Combined Chemical and Nonchemical Stressors
  • 1086 Accesses

Abstract

Physiologically based pharmacokinetic (PBPK) modeling is a tool that is increasingly being used for xenobiotics exposure assessment and target tissue dosimetry simulations in risk assessment and in pharmaceutical sciences. Because this tool can use chemical and physiological information/data from different sources (i.e., in vitro, in vivo, in silico), it is also being increasingly used for mixture exposures, especially for mixtures containing chemicals that toxicokinetically interact, at the physiological, physicochemical, and biochemical level. The aim of this chapter is to give an overview of what PBPK modeling is and how it can be used in the context of mixture toxicology. Known mechanisms of toxicokinetic interactions between xenobiotics are described, and mathematical representations are given when available. Existing modeling approaches that are available in the literature are presented for mixtures of various complexities. Current methods and their limitations are reported, and future directions are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, N., and R. Tardif. 1999. Toxicokinetic Modeling of the Combined Exposure to Toluene and n-Hexane in Rats and Humans. Journal of Occupational Health 41: 95–103.

    Article  CAS  Google Scholar 

  • Andersen, M.E., L.S. Birnbaum, H.A. Barton, and C.R. Eklund. 1997. Regional hepatic CYP1A1 and CYP1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin evaluated with a multicompartment geometric model of hepatic zonation. Toxicology and Applied Pharmacology 144: 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, M.E., M.L. Gargas, H.J.I. Clewell, and K.M. Severyn. 1987. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicology and Applied Pharmacology 89: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Barton, H.A., J.R. Creech, C.S. Godin, G.M. Randall, and C.S. Seckel. 1995. Chloroethylene mixtures: Pharmacokinetic modeling and in vitro metabolism of vinyl chloride, trichloroethylene, and trans-1,2-dichloroethylene in rat. Toxicology and Applied Pharmacology 130: 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Boom, S.P., I. Meyer, A.C. Wouterse, and F.G. Russel. 1998. A physiologically based kidney model for the renal clearance of ranitidine and the interaction with cimetidine and probenecid in the dog. Biopharmaceutics & Drug Disposition 19: 199–208.

    Article  CAS  Google Scholar 

  • Bounakta, S., M. Bteich, M. Mantha, P. Poulin, and S. Haddad. 2017. Predictions of bisphenol A hepatic clearance in the isolated perfused rat liver (IPRL): impact of albumin binding and of co-administration with naproxen. Xenobiotica 3: 1–13.

    Google Scholar 

  • Budha, N.R., A. Frymoyer, G.S. Smelick, J.Y. Jin, M.R. Yago, M.J. Dresser, S.N. Holden, L.Z. Benet, and J.A. Ware. 2012. Drug absorption interactions between oral targeted anticancer agents and PPIs: Is pH-dependent solubility the Achilles heel of targeted therapy? Clinical Pharmacology and Therapeutics 92: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Cherkaoui-Rbati, Mohammed H., Stuart W. Paine, Peter Littlewood, Cyril Rauch, and Jinn-Moon Yang. 2017. A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions. PLoS One 12 (9): e0183794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien, J.Y., K.E. Thummel, and J.T. Slattery. 1997. Pharmacokinetic consequences of induction of CYP2E1 by ligand stabilization. Drug Metabolism and Disposition 25: 1165–1175.

    CAS  PubMed  Google Scholar 

  • Choi, H.K., G.L. Flynn, and G.L. Amidon. 1990. Transdermal delivery of bioactive peptides: The effect of n-decylmethyl sulfoxide, pH, and inhibitors on enkephalin metabolism and transport. Pharmaceutical Research 7: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  • Crisp, J., and C. Taylor. 2012. Potter & Perry’s fundamentals of nursing. 3rd ed. Chatswood: Elsevier.

    Google Scholar 

  • De Castro, J., C. Aguirre, J.M. Rodriguez-Sasiain, E. Gomez, M.J. Garrido, and R. Calvo. 1996. The effect of changes in gastric pH induced by omeprazole on the absorption and respiratory depression of methadone. Biopharmaceutics & Drug Disposition 17: 551–563.

    Article  Google Scholar 

  • Dennison, J.E., M.E. Andersen, and R.S. Yang. 2003. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach. Inhalation Toxicology 15: 961–986.

    Article  CAS  PubMed  Google Scholar 

  • Dix, D.J., K.A. Houck, M.T. Martin, A.M. Richard, R.W. Setzer, and R.J. Kavlock. 2007. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences 95: 5–12.

    Article  CAS  PubMed  Google Scholar 

  • Espie, P., D. Tytgat, M.L. Sargentini-Maier, I. Poggesi, and J.B. Watelet. 2009. Physiologically based pharmacokinetics (PBPK). Drug Metabolism Reviews 41: 391–407.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, J.A., J.A. Clements, and L.F. Prescott. 1982. Clinical pharmacokinetics of paracetamol. Clinical Pharmacokinetics 7: 93–107.

    Article  CAS  PubMed  Google Scholar 

  • Gregus, Z. 2008. Mechanisms of toxicology. In Casarett & Doull's toxicology. The basic science of poisons, ed. C.D. Klaassen, 7th ed. New York: McGraw Hill.

    Google Scholar 

  • Greiff, J.M., and D. Rowbotham. 1994. Pharmacokinetic drug interactions with gastrointestinal motility modifying agents. Clinical Pharmacokinetics 27: 447–461.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., M. Beliveau, R. Tardif, and K. Krishnan. 2001. A PBPK modeling-based approach to account for interactions in the health risk assessment of chemical mixtures. Toxicological Sciences 63: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., G. Charest-Tardif, and K. Krishnan. 2000a. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures. Journal of Toxicology and Environmental Health-Part A 61: 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., G. Charest-Tardif, R. Tardif, and K. Krishnan. 2000b. Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Toxicology and Applied Pharmacology 167: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., and K. Krishnan. 1998. Physiological modeling of toxicokinetic interactions: Implications for mixture risk assessment. Environmental Health Perspectives 106: 1377–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad, S., P. Poulin, and C. Funk. 2010. Extrapolating in vitro metabolic interactions to isolated perfused liver: Predictions of metabolic interactions between R-bufuralol, bunitrolol, and debrisoquine. Journal of Pharmaceutical Sciences 99: 4406–4426.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., G.C. Tardif, and R. Tardif. 2006. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: Trichloroethylene and trihalomethanes. Journal of Toxicology and Environmental Health. Part A 69: 2095–2136.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., R. Tardif, G. Charest-Tardif, and K. Krishnan. 1999a. Physiological modeling of the toxicokinetic interactions in a quaternary mixture of aromatic hydrocarbons. Toxicology and Applied Pharmacology 161: 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S., R. Tardif, and K. Krishnan. 1998. Physiological modeling of higher order metabolic interactions in complex chemical mixtures. Soc Computer Simulation: San Diego.

    Google Scholar 

  • Haddad, S., R. Tardif, C. Viau, and K. Krishnan. 1999b. A modeling approach to account for toxicokinetic interactions in the calculation of biological hazard index for chemical mixtures. Toxicology Letters 108: 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, W.J., and G.W. Pearce. 1953. Pesticide formulation: Relation to safety in use. J Agr Food Chem 1: 466.

    Article  CAS  Google Scholar 

  • Hinderliter, P.M., P.S. Price, M.J. Bartels, C. Timchalk, and T.S. Poet. 2011. Development of a source-to-outcome model for dietary exposures to insecticide residues: An example using chlorpyrifos. Regulatory Toxicology and Pharmacology 61: 82–92.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, C.Y., and M.-S. Wu. 2012. Drug-Induced Alterations in Renal Hemodynamics. Acta Nephrologica 26: 121–133.

    Google Scholar 

  • Isaacs, K.K., M.V. Evans, and T.R. Harris. 2004. Visualization-based analysis for a mixed-inhibition binary PBPK model: Determination of inhibition mechanism. Journal of Pharmacokinetics and Pharmacodynamics 31: 215–242.

    Article  CAS  PubMed  Google Scholar 

  • Ishigam, M., M. Uchiyama, T. Kondo, H. Iwabuchi, S. Inoue, W. Takasaki, T. Ikeda, T. Komai, K. ITO, and Y. Sugiyama. 2001. Inhibition of in vitro metabolism of simvastatin by itraconazole in humans and prediction of in vivo drug-drug interactions. Pharmaceutical Research 18: 622–631.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, S.W., M. Bischel, and R.J. Herschler. 1964. Dimethyl Sulfoxide: Effects on the Permeability of Biologic Membranes (Preliminary Report). Current Therapeutic Research, Clinical and Experimental 6: 193–198.

    CAS  PubMed  Google Scholar 

  • Jang, J.Y., P.O. Droz, and S. Kim. 2001. Biological monitoring of workers exposed to ethylbenzene and co-exposed to xylene. International Archives of Occupational and Environmental Health 74: 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Judson, R.S., K.A. Houck, R.J. Kavlock, T.B. Knudsen, M.T. Martin, H.M. Mortensen, D.M. Reif, D.M. Rotroff, I. Shah, A.M. Richard, and D.J. Dix. 2010. In vitro screening of environmental chemicals for targeted testing prioritization: The ToxCast project. Environmental Health Perspectives 118: 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Kanamitsu, S., K. Ito, C.E. Green, C.A. Tyson, N. Shimada, and Y. Sugiyama. 2000a. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharmaceutical Research 17: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Kanamitsu, S.I., K. Ito, H. Okuda, K. Ogura, T. Watabe, K. Muro, and Y. Sugiyama. 2000b. Prediction of in vivo drug-drug interactions based on mechanism-based inhibition from in vitro data: Inhibition of 5-fluorouracil metabolism by (E)-5-(2-Bromovinyl)uracil. Drug Metabolism and Disposition 28: 467–474.

    CAS  PubMed  Google Scholar 

  • Kenworthy, K.E., S.E. Clarke, J. Andrews, and J.B. Houston. 2001. Multisite kinetic models for CYP3A4: Simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metabolism and Disposition 29: 1644–1651.

    CAS  PubMed  Google Scholar 

  • Keys, D.A., I.R. Schultz, D.A. Mahle, and J.W. Fisher. 2004. A quantitative description of suicide inhibition of dichloroacetic acid in rats and mice. Toxicological Sciences 82: 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, K., and M.E. Andersen. 2007. Physiologically-based pharmacokinetic modeling in toxicology. In Principles and methods of toxicology, ed. A.W. HAYES. New-York: Taylor and Francis.

    Google Scholar 

  • Krishnan, K., H.J. Clewell 3rd, and M.E. Andersen. 1994. Physiologically based pharmacokinetic analyses of simple mixtures. Environmental Health Perspectives 102 (Suppl 9): 151–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan, K., S. Haddad, M. Beliveau, and R. Tardif. 2002. Physiological modeling and extrapolation of pharmacokinetic interactions from binary to more complex chemical mixtures. Environmental Health Perspectives 110: 989–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudsk, F.N. 1965. The influence of ethyl alcohol on the absorption of mercury vapour from the lungs in man. Acta Pharmacol Toxicol (Copenh) 23: 263–274.

    Article  CAS  Google Scholar 

  • Kurihara-Bergstrom, T., G.L. Flynn, and W.I. Higuchi. 1987. Physicochemical study of percutaneous absorption enhancement by dimethyl sulfoxide: Dimethyl sulfoxide mediation of vidarabine (ara-A) permeation of hairless mouse skin. The Journal of Investigative Dermatology 89: 274–280.

    Article  CAS  PubMed  Google Scholar 

  • Leung, H.W., D.J. Paustenbach, F.J. Murray, and M.E. Andersen. 1990. A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicology and Applied Pharmacology 103: 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Marangoni, A.G. 2003. Enzyme kinetics: A modern approach. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Martin, S.A., J.L. Campbell, R.T. Tremblay, and J.W. Fisher. 2012. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat. Inhalation Toxicology 24: 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Mclure, J.A., J.O. Miners, and D.J. Birkett. 2000. Nonspecific binding of drugs to human liver microsomes. British Journal of Clinical Pharmacology 49: 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutlib, A.E., T.C. Goosen, J.N. Bauman, J.A. Williams, S. Kulkarni, and S. Kostrubsky. 2006. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chemical Research in Toxicology 19: 701–709.

    Article  CAS  PubMed  Google Scholar 

  • Nagar, S., S. Walther, and R.L. Blanchard. 2006. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Molecular Pharmacology 69: 2084–2092.

    Article  CAS  PubMed  Google Scholar 

  • Nimmo, W.S., R.C. Heading, J. Wilson, P. Tothill, and L.F. Prescott. 1975. Inhibition of gastric emptying and drug absorption by narcotic analgesics. British Journal of Clinical Pharmacology 2: 509–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, Z., X. Zang, and Y. Zhang. 2015. Using physiologically based pharmacokinetic models to estimate the health risk of mixtures of trihalomethanes from reclaimed water. Journal of Hazardous Materials 285: 190–198.

    Article  CAS  PubMed  Google Scholar 

  • NRC. 2007. Toxicity testing in the 21st century: A vision and a strategy. Washington DC: The National Academies Press.

    Google Scholar 

  • Obach, R.S. 1997. Nonspecific binding to microsomes: Impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metabolism and Disposition 25: 1359–1369.

    CAS  PubMed  Google Scholar 

  • ———. 1999. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metabolism and Disposition 27: 1350–1359.

    CAS  PubMed  Google Scholar 

  • Oskarsson, A., and B. Lind. 1985. Increased lead levels in brain-after long term treatment with lead and dithiocarbamate or thirum derivatives in rats. Acta Pharmacologica et Toxicologica 56: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, P., and S. Haddad. 2013. Toward a new paradigm for the efficient in vitro-in vivo extrapolation of metabolic clearance in humans from hepatocyte data. Journal of Pharmaceutical Sciences 102: 3239–3251.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, P., J.R. Kenny, C.E. Hop, and S. Haddad. 2012. In vitro-in vivo extrapolation of clearance: Modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods. Journal of Pharmaceutical Sciences 101: 838–851.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, Patrick, Michel Bteich, and Sami Haddad. 2017. Supplemental analysis of the prediction of hepatic clearance of binary mixtures of bisphenol A and naproxen determined in an isolated perfused rat liver model to promote the understanding of potential albumin-facilitated hepatic uptake mechanism. Journal of Pharmaceutical Sciences 106 (11): 3207–3214.

    Article  CAS  PubMed  Google Scholar 

  • Price, K., and K. Krishnan. 2011. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. SAR and QSAR in Environmental Research 22: 107–128.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, G.L., J.D. Brooks, R.E. Baynes, N.A. Monteiro-Riviere, P.L. Williams, and J.E. Riviere. 1996. The use of mechanistically defined chemical mixtures (MDCM) to assess component effects on the percutaneous absorption and cutaneous disposition of topically exposed chemicals. I. Studies with parathion mixtures in isolated perfused porcine skin. Toxicology and Applied Pharmacology 141: 473–486.

    Article  CAS  PubMed  Google Scholar 

  • Riihimaki, V. 1979. Percutaneous absorption of m-xylene from a mixture of m-xylene and isobutyl alcohol in man. Scandinavian Journal of Work, Environment & Health 5: 143–150.

    Article  CAS  Google Scholar 

  • Robinson, D.S., D.A. Cunningham, S. Dave, J. Fleming, and D.M. Mitchell. 1991. Diagnostic value of lung clearance of 99mTc DTPA compared with other non-invasive investigations in Pneumocystis carinii pneumonia in AIDS. Thorax 46: 722–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, P.J. 1992. Physiologically based liver modeling and risk assessment. Risk Analysis 12: 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Russel, F.G., A.C. Wouterse, and C.A. van Ginneken. 1987. Physiologically based pharmacokinetic model for the renal clearance of phenolsulfonphthalein and the interaction with probenecid and salicyluric acid in the dog. Journal of Pharmacokinetics and Biopharmaceutics 15: 349–368.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1989. Physiologically based pharmacokinetic model for the renal clearance of iodopyracet and the interaction with probenecid in the dog. Biopharmaceutics & Drug Disposition 10: 137–152.

    Article  CAS  Google Scholar 

  • Sarangapani, R., J. Teeguarden, K.P. Plotzke, J.M. Mckim Jr., and M.E. Andersen. 2002. Dose-response modeling of cytochrome p450 induction in rats by octamethylcyclotetrasiloxane. Toxicological Sciences 67: 159–172.

    Article  CAS  PubMed  Google Scholar 

  • Saville, B.A., M.R. Gray, and Y.K. Tam. 1992. Models of hepatic drug elimination. Drug Metabolism Reviews 24: 49–88.

    Article  CAS  PubMed  Google Scholar 

  • Segel, I.H. 1974. Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady state enzyme systems. New York: John Wiley.

    Google Scholar 

  • Sugita, O., Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. 1982. Physiologically based pharmacokinetics of drug-drug interaction: A study of tolbutamide-sulfonamide interaction in rats. Journal of Pharmacokinetics and Biopharmaceutics 10: 297–316.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Y.M., K.H. Liao, and H.J. Clewell 3rd. 2007. Reverse dosimetry: Interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. Journal of Exposure Science & Environmental Epidemiology 17: 591–603.

    Article  CAS  Google Scholar 

  • Tardif, R., G. Charest-Tardif, J. Brodeur, and K. Krishnan. 1997. Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicology and Applied Pharmacology 144: 120–134.

    Article  CAS  PubMed  Google Scholar 

  • Theil, F.P., T.W. Guentert, S. Haddad, and P. Poulin. 2003. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicology Letters 138: 29–49.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, C.M., B. Sonawane, H.A. Barton, R.S. Dewoskin, J.C. Lipscomb, P. Schlosser, W.A. Chiu, and K. Krishnan. 2008. Approaches for applications of physiologically based pharmacokinetic models in risk assessment. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 11: 519–547.

    Article  CAS  PubMed  Google Scholar 

  • Verner, M.A., P. Ayotte, G. Muckle, M. Charbonneau, and S. Haddad. 2009. A physiologically based pharmacokinetic model for the assessment of infant exposure to persistent organic pollutants in epidemiologic studies. Environmental Health Perspectives 117: 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Verner, M.A., M. Charbonneau, L. Lopez-carrillo, and S. Haddad. 2008. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: A new tool in breast cancer epidemiologic studies. Environmental Health Perspectives 116: 886–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verner, M.A., T. Magher, and S. Haddad. 2010. High concentrations of commonly used drugs can inhibit the in vitro glucuronidation of bisphenol A and nonylphenol in rats. Xenobiotica 40: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, G.R. 1987. Clearance approaches in pharmacology. Pharmacological Reviews 39: 1–47.

    CAS  PubMed  Google Scholar 

  • Zurlinden, T.J., and B. Reisfeld. 2015. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach. European Journal of Drug Metabolism and Pharmacokinetics 41: 267–280.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haddad, S. (2018). Physiologically Based Pharmacokinetic Modeling of Chemical Mixtures. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_12

Download citation

Publish with us

Policies and ethics