Skip to main content

Generalized Construction of Bundle-Folding Linkages

  • Chapter
  • First Online:
Advances in Robot Kinematics 2016

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 4))

  • 2067 Accesses

Abstract

A mechanism which is able to fold into a bundle is of particular interest: minimal size facilitates storage and transport. The paper presents a simple and general geometric method to design bundle-folding linkages based on one-degree-of-freedom spatial overconstrained loops. The so designed mechanism can be folded into a line bundle and deployed into a spatial shape. The geometric conditions, under which an overconstrained linkage can be folded into a bundle, are discussed. Case studies of bundle-folding designs are presented and validated using simulations.

This research has been supported by the National Science Foundation of China (51635002, 51605011, 51275015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, G.: A new mechanism. Engineering 76(12), 777–778 (1903)

    Google Scholar 

  2. Chen, Y.: Design of structural mechanisms. Ph.D. thesis, University of Oxford (2003)

    Google Scholar 

  3. Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42(8), 2287–2301 (2005)

    Article  MATH  Google Scholar 

  4. Cui, J., Huang, H.L., Li, B., et al.: A novel surface deployable antenna structure based on special form of Bricard linkages. Advances in Reconfigurable Mechanisms and Robots I, pp. 783–792. Springer, Berlin (2012)

    Chapter  Google Scholar 

  5. Durand, G., Sauvage, M., Bonnet, A., et al.: TALC: a new deployable concept for a 20-m far-infrared space telescope. In: SPIE Astronomical Telescopes\(+\) Instrumentation, p. 91431A. International Society for Optics and Photonics (2014)

    Google Scholar 

  6. Escrig, F., Valcarcel, J.P., Sanchez, J.: Deployable cover on a swimming pool in Seville. Bull. Int. Assoc. Shell Spat. Struct. 37(1), 39–70 (1996)

    Google Scholar 

  7. Goldberg, M.: Linkages polyhedral. Nat. Math. Mag. 16(7), 323–332 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunt, K.H.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  9. Lu, S., Zlatanov, D., Ding, X., Zoppi, M., Guest, S.: Folding type III Bricard linkages. In: Proceedings of the 14th IFToMM World Congress, pp. 455–462 (2015)

    Google Scholar 

  10. Lu, S.N., Zlatanov, D., Ding, X.L., Molfino, R., Zoppi, M.: Mechanisms with decoupled freedoms assembled from spatial deployable units. Advances in Robot Kinematics, pp. 517–525. Springer, Berlin (2014)

    Chapter  Google Scholar 

  11. Lu, S.N., Zlatanov, D., Ding, X.L., Zoppi, M., Guest, S.D.: A network of type III Bricard linkages. In: ASME 2015 IDETC/CIE, 2015-47139 (2015)

    Google Scholar 

  12. Lu, S.N., Zlatanov, D., Ding, X.L.: Approximation of cylindrical surfaces with deployable Bennett network. In: ASME 2016 IDETC/CIE, 2016-59817 (2016)

    Google Scholar 

  13. Lu, S.N., Zlatanov, D., Ding, X.L., Molfino, R., Zoppi, M.: Novel deployable mechanisms with decoupled degrees-of-freedom. J. Mech. Robot. 8(2), 021008 (2016)

    Article  Google Scholar 

  14. Lu, S.N., Zlatanov, D., Ding, X.L., Zoppi, M., Guest, S.D.: Reconfigurable chains of bifurcating type III Bricard linkages. Advances in Reconfigurable Mechanisms and Robots II, pp. 3–14. Springer, Berlin (2016)

    Chapter  Google Scholar 

  15. Maden, F., Korkmaz, K., Akgün, Y.: A review of planar scissor structural mechanisms: geometric principles and design methods. Archit. Sci. Rev. 54(3), 246–257 (2011)

    Article  Google Scholar 

  16. Myard, F.E.: Chaîne fermée à cinq couples rotoïdes, déformable au premier degré de liberté. Comptes Rendus Hebdomadaires des Séances de lAcadémie des Sciences 192, 1352–1354 (1931)

    MATH  Google Scholar 

  17. Pellegrino, S., Green, C., Guest, S.D., et al.: SAR Advanced Deployable Structure. University of Cambridge, Department of Engineering (2000)

    Google Scholar 

  18. Perez, A., McCarthy, J.M.: Dimensional synthesis of Bennett linkages. J. Mech. Design 125(1), 98–104 (2003)

    Article  Google Scholar 

  19. Phillips, J.: Freedom in Machinery, vol. 1. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  20. Qi, X.Z., Deng, Z.Q., Li, B., et al.: Design and optimization of large deployable mechanism constructed by Myard linkages. CEAS Sp. J. 5(3–4), 147–155 (2013)

    Article  Google Scholar 

  21. Sarrus, P.T.: Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires; et reciproquement. Academie des sciences, comtes rendus hebdomataires des sances 36, 1036–1038 (1853)

    Google Scholar 

  22. Viquerat, A.D., Hutt, T., Guest, S.D.: A plane symmetric 6R foldable ring. Mech. Mach. Theory 63, 73–88 (2013)

    Article  Google Scholar 

  23. Waldron, K.: Overconstrained linkages. Environ. Plan. B Plan. Design 6(4), 393–402 (1979)

    Article  Google Scholar 

  24. Zhao, J.S., Chu, F.L., Feng, Z.J.: The mechanism theory and application of deployable structures based on SLE. Mech. Mach. Theory 44(2), 324–335 (2009)

    Article  MATH  Google Scholar 

  25. Zhao, J.S., Wang, J.Y., Chu, F.L., et al.: Mechanism synthesis of a foldable stair. J. Mech. Robot. 4(1), 014502 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Zlatanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lu, S., Zlatanov, D., Zoppi, M., Ding, X. (2018). Generalized Construction of Bundle-Folding Linkages. In: Lenarčič, J., Merlet, JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56802-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56802-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56801-0

  • Online ISBN: 978-3-319-56802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics