Skip to main content

Nanostructured Porous Polymers for Metal-Free Photocatalysis

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

  • 2483 Accesses

Abstract

The direct utilization of sunlight, especially the visible light part of solar spectrum as a clean and abundant energy source to activate organic reactions is a great challenge in organic chemistry and materials science. Beside the well-developed metal-based photocatalysts such as inorganic semiconductors or transition metal complexes, pure organic photocatalytic systems have gained much attention currently. Among metal-free photocatalysts, nanostructured and highly porous conjugated polymers are of particular interest due to their flexible tunability of optical and electronic properties. In this chapter, an overview on the development of this new class of functional materials is given. Various structural design methods such as donor–acceptor combination on the molecular level, band positions modification, and p/n character variation are shown, and porosity, morphology control and their impact on the photocatalytic efficiency are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narayanam JM, Stephenson CR (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40(1):102–113

    Article  Google Scholar 

  2. Cooper AI (2009) Conjugated microporous polymers. Adv Mater 21(12):1291–1295

    Article  Google Scholar 

  3. Xu Y, Jin S, Xu H et al (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031

    Article  Google Scholar 

  4. Jiang JX, Su F, Trewin A et al (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578

    Article  Google Scholar 

  5. Vilela F, Zhang K, Antonietti M (2012) Conjugated porous polymers for energy applications. Energy Environ Sci 5(7):7819–7832

    Article  Google Scholar 

  6. Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39(8):3181–3209

    Article  Google Scholar 

  7. Lovell JF, Liu TW, Chen J et al (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110(5):2839–2857

    Article  Google Scholar 

  8. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Chem Rev 233:351–371

    Google Scholar 

  9. Zhang K, Kopetzki D, Seeberger P H et al (2013) Surface area control and photocatalytic activity of conjugated microporous poly (benzothiadiazole) networks. Angewandte Chemie, 125(5):1472-1476.

    Google Scholar 

  10. Ding X, Han BH (2015) Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew Chem Int Ed 54(22):6536–6539

    Article  Google Scholar 

  11. Kang N, Park JH, Ko KC et al (2013) Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks. Angew Chem Int Ed 52(24):6228–6232

    Article  Google Scholar 

  12. Ravelli D, Fagnoni M, Albini A (2013) Photoorganocatalysis. What for? Chem Soc Rev 42(1):97–113

    Article  Google Scholar 

  13. Jiang J-X, Li Y, Wu X et al (2013) Conjugated microporous polymers with rose bengal dye for highly efficient heterogeneous organo-photocatalysis. Macromolecules 46(22):8779–8783

    Article  Google Scholar 

  14. Wang Z J, Ghasimi S, Landfester K et al (2015) Molecular structural design of conjugated microporous poly (benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Advanced Materials 27(40):6265–6270.

    Google Scholar 

  15. Wang ZJ, Garth K, Ghasimi S et al (2015) Conjugated microporous poly (benzochalcogenadiazole) for photocatalytic oxidative coupling of amines under visible light. Chem Sus Chem 8(20):3459–3464

    Article  Google Scholar 

  16. Luo J, Zhang X, Zhang J (2015) Carbazolic porous organic framework as an efficient, metal-free visible-light photocatalyst for organic synthesis. ACS Catal 5(4):2250–2254

    Article  Google Scholar 

  17. Su C, Tandiana R, Tian B et al (2016) Visible-light photocatalysis of aerobic oxidation reactions using carbazolic conjugated microporous polymers. ACS Catal 6(6):3594–3599

    Article  Google Scholar 

  18. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453

    Article  Google Scholar 

  19. Sakaushi K, Hosono E, Nickerl G et al (2013) Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat Commun 4:1485

    Article  Google Scholar 

  20. Palkovits R, Antonietti M, Kuhn P et al (2009) Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed 48(37):6909–6912

    Article  Google Scholar 

  21. Bhunia A, Boldog I, Möller A et al (2013) Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. J Mater Chem A 1(47):14990–14999

    Article  Google Scholar 

  22. Huang W, Wang ZJ, Ma BC et al (2016) Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J Mater Chem A 4:7555–7559

    Article  Google Scholar 

  23. Wang ZJ, Ghasimi S, Landfester K et al (2015) Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mater 27(6):1921–1924

    Article  Google Scholar 

  24. Rikken GLJA, Braun D, Staring EGJ et al (1994) Schottky effect at a metal-polymer interface. Appl Phys Lett 65(2):219–221

    Article  Google Scholar 

  25. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J Phys Chem B 105(46):11439–11446

    Article  Google Scholar 

  26. Li XH, Baar M, Blechert S et al (2013) Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C–C-coupling. Sci Rep 3

    Google Scholar 

  27. Li X-H, Antonietti M (2013) Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem Soc Rev 42(16):6593–6604

    Article  Google Scholar 

  28. Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

  29. Wang X, Maeda K, Chen X et al (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131(5):1680–1681

    Article  Google Scholar 

  30. Zhang J, Zhang G, Chen X et al (2012) Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew Chem Int Ed 124(13):3237–3241

    Article  Google Scholar 

  31. Sprick RS, Jiang J-X, Bonillo B et al (2015) Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc 137(9):3265–3270

    Article  Google Scholar 

  32. Yang C, Ma BC, Zhang L et al (2016) Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 55:9202–9206

    Article  Google Scholar 

  33. Li L, Cai Z, Wu Q et al (2016) Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc 138(24):7681–7686

    Article  Google Scholar 

  34. Cheng G, Hasell T, Trewin A et al (2012) Soluble conjugated microporous polymers. Angew Chem Int Ed 51(51):12727–12731

    Article  Google Scholar 

  35. Deng S, Zhi J, Zhang X et al (2014) Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors. Angew Chem Int Ed 53(51):14144–14148

    Article  Google Scholar 

  36. Urakami H, Zhang K, Vilela F (2013) Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem Commun 49(23):2353–2355

    Article  Google Scholar 

  37. Ghasimi S, Landfester K, Zhang KAI (2016) Water compatible conjugated microporous polyazulene networks as visible-light photocatalysts in aqueous medium. Chem Cat Chem 8(4):694–698

    Google Scholar 

  38. Zhang P, Weng ZH, Guo J et al (2011) Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the suzuki-miyaura coupling reaction. Chem Mater 23(23):5243–5249

    Article  Google Scholar 

  39. Ma BC, Ghasimi S, Landfester K et al (2015) Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J Mater Chem A 3(31):16064–16071

    Article  Google Scholar 

  40. Bokhari M, Carnachan RJ, Cameron NR et al (2007) Novel cell culture device enabling three-dimensional cell growth and improved cell function. Biochem Biophys Res Commun 354(4):1095–1100

    Article  Google Scholar 

  41. Dizge N, Keskinler B, Tanriseven A (2008) Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde. Colloid Surface B 66(1):34–38

    Article  Google Scholar 

  42. Pierre SJ, Thies JC, Dureault A et al (2006) Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv Mater 18(14):1822–1826

    Article  Google Scholar 

  43. Su F, Bray CL, Tan B et al (2008) Rapid and reversible hydrogen storage in clathrate hydrates using emulsion-templated polymers. Adv Mater 20(14):2663–2666

    Article  Google Scholar 

  44. Mert EH, Yıldırım H, Üzümcü AT et al (2013) Synthesis and characterization of magnetic polyHIPEs with humic acid surface modified magnetic iron oxide nanoparticles. React Funct Polym 73(1):175–181

    Article  Google Scholar 

  45. Zhang K, Vobecka Z, Tauer K et al (2013) Conjugated polyHIPEs as highly efficient and reusable heterogeneous photosensitizers. Chem Commun 49(95):11158–11160

    Article  Google Scholar 

  46. Wang ZJ, Ghasimi S, Landfester K et al (2014) Highly porous conjugated polymers for selective oxidation of organic sulfides under visible light. Chem Commun 50(60):8177–8180

    Article  Google Scholar 

  47. Wang ZJ, Ghasimi S, Landfester K et al (2014) A conjugated porous poly-benzobisthiadiazole network for a visible light-driven photoredox reaction. J Mater Chem A 2(44):18720–18724

    Article  Google Scholar 

  48. Wang ZJ, Landfester K, Zhang KAI (2014) Hierarchically porous [small pi]-conjugated polyHIPE as a heterogeneous photoinitiator for free radical polymerization under visible light. Polym Chem 5(11):3559–3562

    Article  Google Scholar 

  49. Li R, Wang ZJ, Wang L et al (2016) Photocatalytic selective bromination of electron-rich aromatic compounds using microporous organic polymers with visible light. ACS Catal l6(2):1113–1121

    Article  Google Scholar 

  50. Li W, Zhang W, Dong X et al (2012) Porous heterogeneous organic photocatalyst prepared by HIPE polymerization for oxidation of sulfides under visible light. J Mater Chem 22(34):17445–17448

    Article  Google Scholar 

  51. Dadashi-Silab S, Bildirir H, Dawson R et al (2014) Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules 47(14):4607–4614

    Article  Google Scholar 

  52. Pastor-Pérez L, Barriau E, Frey H et al (2008) Photocatalysis within hyperbranched polyethers with a benzophenone core. J Org Chem 73(12):4680–4683

    Article  Google Scholar 

  53. Chavan SA, Maes W, Gevers LEM et al (2005) Porphyrin functionalized dendrimers: synthesis and application as recyclable photocatalysts in a nanofiltration membrane reactor. Chem Eur J 11(22):6754–6762

    Article  Google Scholar 

  54. Shen J, Steinbach R, Tobin JM et al (2016) Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation. Appl Catal B 193:226–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai A. I. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Huang, W., Li, R., Ma, B.C., Zhang, K.A.I. (2017). Nanostructured Porous Polymers for Metal-Free Photocatalysis. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_18

Download citation

Publish with us

Policies and ethics