Skip to main content

A Big Data Architecture for Traffic Forecasting Using Multi-Source Information

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10230))

Included in the following conference series:

Abstract

An important strand of predictive analytics for transport related applications is traffic forecasting. Accurate approximations of the state of transport networks in short, medium or long-term future horizons can be used for supporting traveller information, or traffic management systems. Traffic forecasting has been the focus of many researchers over the last two decades. Most of the existing works, focus on single point, corridor, or intersection based predictions with limited efforts to solutions that cover large metropolitan areas. In this work, an open big-data architecture for road traffic prediction in large metropolitan areas is proposed. The functional characteristics of the architecture, that allows processing of data from various sources, such as urban and inter-urban traffic data streams and social media, is investigated. Furthermore, its conceptual design using state-of-the-art computing technologies is realised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vlahogianni, E., Karlaftis, M., Golias, J.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C Emerg. Technol. 43, 3–19 (2014)

    Article  Google Scholar 

  2. Vlahogianni, E.I., Park, B.B., van Lint, J.W.C.: Big data in transportation and traffic engineering. Transp. Res. Part C Emerg. Technol. 58, 161 (2015)

    Article  Google Scholar 

  3. Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp. Res. Rec. 722, 1–9 (1979)

    Google Scholar 

  4. VanderVoort, M., Dougherty, M., Watson, S.: Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp. Res. C Emerg. Technol. 4(5), 307–318 (1996)

    Article  Google Scholar 

  5. Lee, S., Fambro, D.: Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transp. Res. Rec. 1678, 179–188 (1999)

    Article  Google Scholar 

  6. Williams, M.: Multivariate vehicular traffic flow prediction evaluation of ARIMAX modeling. Transp. Res. Rec. 1776, 194–200 (2001)

    Article  Google Scholar 

  7. Kamarianakis, Y., Prastacos, P.: Forecasting traffic flow conditions in an urban network comparison of multivariate and univariate approaches. Transp. Res. Rec. 1857, 74–84 (2003)

    Article  Google Scholar 

  8. Williams, M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  9. Stathopoulos, A., Karlaftis, M.G.: A multivariate state space approach for urban traffic flow modeling and prediction. Transp. Res. C Emerg. Technol. 11(2), 121–135 (2003)

    Article  Google Scholar 

  10. Kamarianakis, Y., Prastacos, P.: Spacetime modeling of traffic flow. Comput. Geosci. 31(2), 119–133 (2005)

    Article  Google Scholar 

  11. Whittaker, J., Garside, S., Lindveld, K.: Tracking and predicting a network traffic process. Int. J. Forecast. 13, 51–61 (1997)

    Article  Google Scholar 

  12. Ghosh, B., Basu, B., O’Mahony, M.: Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Trans. Intell. Transp. Syst. 10(2), 246–254 (2009)

    Article  Google Scholar 

  13. Davis, G.A., Nihan, N.L.: Nonparametric regression and short-term freeway traffic forecasting. J. Transp. Eng. 117(2), 178–188 (1991)

    Article  Google Scholar 

  14. Chang, H., Lee, Y., Yoon, B., Baek, S.: Dynamic near-term traffic flow prediction: system oriented approach based on past experiences. IET Intell. Transp. Syst. 6(3), 292–305 (2012)

    Article  Google Scholar 

  15. El Faouzi, N.E.: Nonparametric traffic flow prediction using kernel estimator. In: Proceedings of the 13th ISTTT, pp. 41–54 (1996)

    Google Scholar 

  16. Sun, H.Y., Liu, H.X., Xiao, H., He, R.R., Ran, B.: Use of local linear regression model for short-term traffic forecasting. Transp. Res. Rec. 1836, 143–150 (2003)

    Article  Google Scholar 

  17. Sun, S., Zhang, C., Guoqiang, Y.: A Bayesian network approach to traffic flow forecasting. IEEE Intell. Transp. Syst. Mag. 7(1), 124–132 (2006)

    Article  Google Scholar 

  18. Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 14(4), 1700–1707 (2013)

    Article  Google Scholar 

  19. Faghri, A., Hua, J.: Roadway seasonal classification using neural networks. J. Comput. Civ. Eng. 9(3), 209–215 (1995)

    Article  Google Scholar 

  20. Lingras, P., Adamo, M.: Average and peak traffic volumes: neural nets, regression, factor approaches. J. Comput. Civ. Eng. 10(4), 300 (1996)

    Article  Google Scholar 

  21. Dougherty, M.S., Cobbett, M.R.: Short-term inter-urban traffic forecasts using neural networks. Int. J. Forecast. 13(1), 21–31 (1997)

    Article  Google Scholar 

  22. Dia, H.: An object-oriented neural network approach to short-term traffic forecasting. Eur. J. Oper. Res. 131(2), 253–261 (2001)

    Article  MATH  Google Scholar 

  23. Li, R., Rose, G.: Incorporating uncertainty into short-term travel time predictions. Transp. Res. Part C Emerg. Technol. 19(6), 1006–1018 (2011)

    Article  Google Scholar 

  24. Van Lint, J.W.C., Hoogendoorn, S.P., Zuylen, H.V.: Freeway travel time prediction with state-spaced neural networks: modeling state-space dynamics with recurrent neural networks. Transp. Res. Rec. J. Transp. Res. Board 1811, 30–39 (2002)

    Article  MATH  Google Scholar 

  25. Van Lint, J.W.C.: Reliable real-time framework for short-term freeway travel time prediction. J. Transp. Eng. 130(12), 921–932 (2004)

    Google Scholar 

  26. Van Lint, J.W.C., Hoogendoorn, S.P., Zuylen, H.V.: Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C 13, 347–369 (2005)

    Article  Google Scholar 

  27. Liu, H., Zuylen, H.V., Lint, H.V., Salomons, M.: Predicting urban arterial travel time with state-space neural networks and Kalman filters. Transp. Res. Rec. J Transp. Res. Board 1968, 99–108 (2006)

    Article  Google Scholar 

  28. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C 54, 187–197 (2015)

    Article  Google Scholar 

  29. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C 13(3), 211–234 (2005)

    Article  Google Scholar 

  30. Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D., Van Lint, J.W.C.: A genetic algorithm-based method for improving quality of travel time prediction intervals. Transp. Res. Part C 19(6), 1364–1376 (2011)

    Article  Google Scholar 

  31. He, W., Lu, T., Wang, E.: A new method for traffic forecasting based on the data mining technology with artificial intelligent algorithms. Res. J. Appl. Sci. Eng. Technol. 5(12), 3417–3422 (2013)

    Google Scholar 

  32. Zhu, J., Zhang, T.: A layered neural network competitive algorithm for short-term traffic forecasting. In: Computational Intelligence and Software Engineering, pp. 1–4 (2009)

    Google Scholar 

  33. Chen, H., Grant-Muller, S., Mussone, L., Montgomery, F.: A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Comput. Appl. 10(3), 277 (2001)

    Article  MATH  Google Scholar 

  34. Yin, H.: Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C Emerg. Technol. 10, 85–98 (2002)

    Article  Google Scholar 

  35. Dimitriou, L., Tsekeris, T., Stathopoulos, A.: Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transp. Res. C Emerg. Technol. 16(5), 554–573 (2008)

    Article  Google Scholar 

  36. Lu, H.P., Sun, Z.Y., Qu, W.C., Wang, L.: Real-time corrected traffic correlation model for traffic flow forecasting. Math. Problems Eng. 501, 348036 (2015)

    Google Scholar 

  37. Tan, M.C., Wong, S.C., Xu, J.M., Guan, Z.R., Peng, Z.: An aggregation approach to short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 10(1), 60–69 (2009)

    Article  Google Scholar 

  38. Lin, L., Ni, M., He, Q., Gao, J., Sadek, A.W.: Modeling the impacts of inclement weather on freeway traffic speed: exploratory study with social media data. Transp. Res. Rec.: J. Transp. Res. Board 2482, 82–89 (2015)

    Article  Google Scholar 

  39. Tejaswin, P., Kumar, R., Gupta, S.: Tweeting traffic: analyzing twitter for generating real-time city traffic insights and predictions. In: Proceedings of the 2nd IKDD Conference on Data Sciences, p. 9 (2015)

    Google Scholar 

  40. Steur, R.J.: Twitter as a spatio-temporal source for incident management. Thesis, Utrecht University, Utrecht (2015)

    Google Scholar 

  41. Gong, Y., Deng, F., Sinnott, R.O.: Identification of (near) real-time traffic congestion in the cities of Australia through Twitter. In: Proceedings of the ACM First International Workshop on Understanding the City with Urban Informatics, pp. 7–12 (2015)

    Google Scholar 

  42. Ni, M., He, Q., Gao, J.: Using social media to predict traffic flow under special event conditions. In: The 93rd Annual Meeting of Transportation Research Board (2014)

    Google Scholar 

  43. Pathania, D., Karlapalem, K.: Social network driven traffic decongestion using near time forecasting. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1761–1762 (2015)

    Google Scholar 

  44. Abidin, A.F., Kolberg, M., Hussain, A.: Integrating Twitter traffic information with Kalman filter models for public transportation vehicle arrival time prediction. In: Trovati, M., Hill, R., Anjum, A., Zhu, S.Y., Liu, L. (eds.) Big-Data Analytics and Cloud Computing, pp. 67–82. Springer, Cham (2015). doi:10.1007/978-3-319-25313-8_5

    Chapter  Google Scholar 

  45. Highways England. http://www.highways.gov.uk/

  46. Birmingham City Council Open Data. http://butc.opendata.onl/AL_OpenData

  47. Twitter. https://dev.twitter.com/

  48. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, 2nd edn. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  49. Hydman, R., Athanasopoulos, G.: Forecasting Principles and Practice. OTexts, Melbourn (2013)

    Google Scholar 

  50. Petris, G., Petrone, S., Campagnoli, P.: Dynamic Linear Models with R. Springer, New York (2009)

    Book  MATH  Google Scholar 

  51. Commander, J., Koopman, S.J.: An Introduction to State Space Time Series Analysis. Oxford University Press, Oxford (2007)

    Google Scholar 

  52. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data mining, Inference and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  53. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  54. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Pearson, Prentice Hall, Upper Saddle (1999)

    MATH  Google Scholar 

  55. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1996)

    MATH  Google Scholar 

  56. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  57. R project. https://www.r-project.org

  58. Hyndman, R.J., Yeasmin Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 26(3), 1–22 (2008)

    Google Scholar 

  59. Pykalman. https://pykalman.github.io

  60. Keras Library. https://github.com/fchollet/keras

  61. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Esuli, A., Sebastiani, F.: SENTIWORDNET: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 2006), pp 417–422 (2006)

    Google Scholar 

  63. Apache Kafka. https://kafka.apache.org/

  64. Apache Hadoop. https://hadoop.apache.org

  65. Dimiduk, N., Khurana, A.: HBase in Action. Manning, Shelter Island (2013)

    Google Scholar 

  66. Apache Flume. https://flume.apache.org

  67. Grover, M., Malaska, T., Seidman, J., Shapira, G.: Hadoop Application Architectures. O’Reilly Media, Beijing (2015)

    Google Scholar 

  68. Apache Spark. https://spark.apache.org

  69. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  70. Redis. https://redis.io

Download references

Acknowledgments

This research was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 636160-2, the Optimum project, http://www.optimumproject.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis G. Petalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Petalas, Y.G., Ammari, A., Georgakis, P., Nwagboso, C. (2017). A Big Data Architecture for Traffic Forecasting Using Multi-Source Information. In: Sellis, T., Oikonomou, K. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2016. Lecture Notes in Computer Science(), vol 10230. Springer, Cham. https://doi.org/10.1007/978-3-319-57045-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57045-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57044-0

  • Online ISBN: 978-3-319-57045-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics