Skip to main content

Neuroglia: Functional Paralysis and Reactivity in Alzheimer’s Disease and Other Neurodegenerative Pathologies

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

The most notable finding in neurodegenerative diseases is the progressive death of neurones cells. Yet, neuroglial changes can precede and facilitate neuronal loss. This is perhaps expected because astroglial cells maintain the brain homoeostasis, and are responsible for defence and regeneration, so that their malfunction manifested as degeneration or asthenia together with reactivity contribute to pathophysiology. Neuroglia may represent a novel target for therapeutic intervention, be that prevention, slowing progression of or possibly curing neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3xTg-AD:

Triple transgenic mouse model of Alzheimer’s disease, overexpressing mutant genes for amyloid precursor protein (APPSwe), presenilin 1 (PS1M146V) and microtubule-associated protein Tau (TauP301L)

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

CNS:

Central nervous system

CPA:

Cyclopiazonic acid

DAT1:

Dopamine transporter1

EAAT2:

Excitable amino acid transporter 2

ER:

Endoplasmic reticulum

HD:

Huntington disease

GRP78:

78 kDa glucose-regulated protein

IDE:

Insulin degrading enzyme InsP3: inositol 1,4,5-trisphosphate

JAK/STAT3:

Janus kinase/signal transducers and activators of transcription

L-DOPA:

L-3,4-Dihydroxyphenylalanine

MHC-II:

Major histocompatibility complex II

mRNA:

Messenger RNA

NFAT:

Nuclear factor of activated T-cells

PD:

Parkinson disease

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PS1:

Presenilin 1

SOCE:

Store-operated Ca2+ entry

SOD1:

Superoxide dismutase 1

TLR2, TLR4:

Toll receptors 2, 4

UPR:

Unfolded protein response

VGLUT1:

Vesicular l-glutamate transporter

References

  1. Bartol TM, Bromer C, Kinney J, Chirillo MA, Bourne JN, Harris KM, Sejnowski TJ (2015) Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife 4:e10778

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kettenmann H, Ransom BR (eds) (2013) Neuroglia. Oxford University Press, Oxford, p 864

    Google Scholar 

  3. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  4. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  PubMed  CAS  Google Scholar 

  6. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    Article  CAS  PubMed  Google Scholar 

  8. Verkhratsky A, Rodriguez JJ, Parpura V (2013) Astroglia in neurological diseases. Future Neurol 8:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4:e00082

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  CAS  PubMed  Google Scholar 

  11. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  12. Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, Bredesen DE, Volterra A (2008) Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 15:1691–1700

    Article  CAS  PubMed  Google Scholar 

  13. Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80:224–232

    Article  CAS  PubMed  Google Scholar 

  14. Valori CF, Brambilla L, Martorana F, Rossi D (2014) The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 71:287–297

    Article  CAS  PubMed  Google Scholar 

  15. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nonneman A, Robberecht W, Van Den Bosch L (2014) The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener Dis Manag 4:223–239

    Article  PubMed  Google Scholar 

  18. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, Hersmus N, Kusters B, Van Den Bosch L, Van Damme P, Richardson WD, Robberecht W (2013) Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136:471–482

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lasiene J, Yamanaka K (2011) Glial cells in amyotrophic lateral sclerosis. Neurol Res Int 2011:718987

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo XG, Chen SD (2012) The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 1:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8:888–899

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodriguez-Martin E (2002) The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 25:245–263

    Article  CAS  PubMed  Google Scholar 

  24. Mena MA, Garcia de Yebenes J (2008) Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist 14:544–560

    Article  CAS  PubMed  Google Scholar 

  25. Tong J, Ang LC, Williams B, Furukawa Y, Fitzmaurice P, Guttman M, Boileau I, Hornykiewicz O, Kish SJ (2015) Low levels of astroglial markers in Parkinson’s disease: relationship to alpha-synuclein accumulation. Neurobiol Dis 82:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Zhou J (2013) Oligodendrocytes in neurodegenerative diseases. Front Biol 8:127–133

    Article  CAS  Google Scholar 

  27. Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord 22:2196–2203

    Article  PubMed  Google Scholar 

  28. Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:277–287

    Article  CAS  PubMed  Google Scholar 

  29. Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164

    Article  CAS  PubMed  Google Scholar 

  31. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246

    Article  CAS  PubMed  Google Scholar 

  32. Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135

    Article  CAS  PubMed  Google Scholar 

  33. Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C (2009) Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia 58:148–156

    Article  Google Scholar 

  34. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58:831–838

    PubMed  Google Scholar 

  35. Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 323:170–182

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    Article  CAS  PubMed  Google Scholar 

  37. Verkhratsky A, Marutle A, Rodríguez-Arellano JJ, Nordberg A (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease. Neuroscientist 21:552–568

    Article  CAS  PubMed  Google Scholar 

  38. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7(4):399–412. in press

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown WR, Moody DM, Thore CR, Challa VR (2000) Cerebrovascular pathology in Alzheimer’s disease and leukoaraiosis. Ann N Y Acad Sci 903:39–45

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen HM, Ek D, Avdic U, Orbjorn C, Hansson O, Netherlands Brain B, Veerhuis R, Rozemuller AJ, Brun A, Minthon L, Wennstrom M (2013) NG2 cells, a new trail for Alzheimer’s disease mechanisms? Acta Neuropathol Commun 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pak K, Chan SL, Mattson MP (2003) Presenilin-1 mutation sensitizes oligodendrocytes to glutamate and amyloid toxicities, and exacerbates white matter damage and memory impairment in mice. NeuroMolecular Med 3:53–64

    Article  CAS  PubMed  Google Scholar 

  42. Rivera A, Vanzuli I, Arellano JJ, Butt A (2016) Decreased regenerative capacity of oligodendrocyte progenitor cells (NG2-glia) in the ageing brain: a vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Curr Alzheimer Res 13:413–418

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP, Hsu CY (2001) Amyloid-β peptides are cytotoxic to oligodendrocytes. J Neurosci 21:RC118

    CAS  PubMed  Google Scholar 

  44. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  Google Scholar 

  45. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211

    Article  CAS  PubMed  Google Scholar 

  46. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with β-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8:e60921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez JJ, Noristani HN, Verkhratsky A (2015) Microglial response to Alzheimer’s disease is differentially modulated by voluntary wheel running and enriched environments. Brain Struct Funct 220:941–953

    Article  CAS  PubMed  Google Scholar 

  48. Rossi D (2015) Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 130:86–120

    Article  CAS  PubMed  Google Scholar 

  49. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F, Houitte D, Faivre E, Vandesquille M, Aron-Badin R, Dhenain M, Deglon N, Hantraye P, Brouillet E, Bonvento G, Escartin C (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35:2817–2829

    Article  CAS  PubMed  Google Scholar 

  50. Mena MA, Casarejos MJ, Carazo A, Paino CL, Garcia de Yebenes J (1996) Glia conditioned medium protects fetal rat midbrain neurones in culture from L-DOPA toxicity. Neuroreport 7:441–445

    Article  CAS  PubMed  Google Scholar 

  51. Asanuma M, Miyazaki I, Murakami S, Diaz-Corrales FJ, Ogawa N (2014) Striatal astrocytes act as a reservoir for L-DOPA. PLoS One 9:e106362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Streit WJ, Xue QS (2012) Alzheimer’s disease, neuroprotection, and CNS immunosenescence. Front Pharmacol 3:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Verkhratsky A, Marutle A, Rodriguez-Arellano JJ, Nordberg A (2014) Glial asthenia and functional paralysis: a new perspective on Neurodegeneration and Alzheimer’s disease. Neuroscientist 21(5):552–568

    Article  PubMed  CAS  Google Scholar 

  54. Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485

    Article  PubMed  PubMed Central  Google Scholar 

  55. Alzheimer A (1910) Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Nissl F, Alzheimer A (eds) Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten, vol 1–3. Gustav Fischer, Jena, pp 401–562

    Google Scholar 

  56. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  CAS  PubMed  Google Scholar 

  57. Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ (2012) Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat 221:252–262

    Article  PubMed  PubMed Central  Google Scholar 

  58. Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2016b) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79

    Article  CAS  PubMed  Google Scholar 

  59. Yeh CY, Vadhwana B, Verkhratsky A, Rodriguez JJ (2011) Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 3:271–279

    Article  CAS  PubMed  Google Scholar 

  60. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beauquis J, Pavia P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239:28–37

    Article  CAS  PubMed  Google Scholar 

  62. Rodriguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ryan SM, Kelly AM (2016) Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing Res Rev 27:77–92. in press

    Article  CAS  PubMed  Google Scholar 

  64. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    Article  CAS  PubMed  Google Scholar 

  65. Alberdi E, Wyssenbach A, Alberdi M, Sanchez-Gomez MV, Cavaliere F, Rodriguez JJ, Verkhratsky A, Matute C (2013) Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12:292–302

    Article  CAS  PubMed  Google Scholar 

  66. Lim D, Rodriguez-Arellano JJ, Parpura V, Zorec R, Zeidan-Chulia F, Genazzani AA, Verkhratsky A (2016) Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer’s disease. Curr Alzheimer Res 13:359–369

    Article  CAS  PubMed  Google Scholar 

  67. Lim D, Ronco V, Grolla AA, Verkhratsky A, Genazzani AA (2014) Glial calcium signalling in Alzheimer’s disease. Rev Physiol Biochem Pharmacol 167:45–65

    Article  CAS  PubMed  Google Scholar 

  68. Haughey NJ, Mattson MP (2003) Alzheimer’s amyloid β-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. NeuroMolecular Med 3:173–180

    Article  PubMed  Google Scholar 

  69. Lim D, Iyer A, Ronco V, Grolla AA, Canonico PL, Aronica E, Genazzani AA (2013) Amyloid β deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-κB. Glia 61:1134–1145

    Article  PubMed  Google Scholar 

  70. Casley CS, Lakics V, Lee HG, Broad LM, Day TA, Cluett T, Smith MA, O'Neill MJ, Kingston AE (2009) Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-β peptide. Brain Res 1260:65–75

    Article  CAS  PubMed  Google Scholar 

  71. Toivari E, Manninen T, Nahata AK, Jalonen TO, Linne ML (2011) Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2AM measurements and stochastic model simulations. PLoS One 6:e17914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–5095

    CAS  PubMed  Google Scholar 

  73. Abramov AY, Canevari L, Duchen MR (2004) Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742:81–87

    Article  CAS  PubMed  Google Scholar 

  74. Chow SK, Yu D, Macdonald CL, Buibas M, Silva GA (2010) Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes. ASN Neuro 2:e00026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Jalonen TO, Charniga CJ, Wielt DB (1997) β-Amyloid peptide-induced morphological changes coincide with increased K+ and Cl channel activity in rat cortical astrocytes. Brain Res 746:85–97

    Article  CAS  PubMed  Google Scholar 

  76. Lee L, Kosuri P, Arancio O (2014) Picomolar amyloid-β peptides enhance spontaneous astrocyte calcium transients. J Alzheimers Dis 38:49–62

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pirttimaki TM, Codadu NK, Awni A, Pratik P, Nagel DA, Hill EJ, Dineley KT, Parri HR (2013) α7 nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS One 8:e81828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D (2013a) Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 34:511–522

    Article  CAS  PubMed  Google Scholar 

  79. Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D (2014) Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 55:219–229

    Article  CAS  PubMed  Google Scholar 

  80. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323:1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takano T, Han X, Deane R, Zlokovic B, Nedergaard M (2007) Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 1097:40–50

    Article  CAS  PubMed  Google Scholar 

  82. Delekate A, Fuchtemeier M, Schumacher T, Ulbrich C, Foddis M, Petzold GC (2014) Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun 5:5422

    Article  PubMed  Google Scholar 

  83. Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A (2013b) Amyloid-β and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis 4:e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stenovec M, Trkov S, Lasic E, Terzieva S, Kreft M, Rodriguez Arellano JJ, Parpura V, Verkhratsky A, Zorec R (2016) Expression of familial Alzheimer disease presenilin 1 gene attenuates vesicle traffic and reduces peptide secretion in cultured astrocytes devoid of pathologic tissue environment. Glia 64:317–329

    Article  PubMed  Google Scholar 

  85. Linde CI, Baryshnikov SG, Mazzocco-Spezzia A, Golovina VA (2011) Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein. Am J Physiol Cell Physiol 300:C1502–C1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bambrick LL, Golovina VA, Blaustein MP, Yarowsky PJ, Krueger BK (1997) Abnormal calcium homeostasis in astrocytes from the trisomy 16 mouse. Glia 19:352–358

    Article  CAS  PubMed  Google Scholar 

  87. Iyer AM, van Scheppingen J, Milenkovic I, Anink JJ, Lim D, Genazzani AA, Adle-Biassette H, Kovacs GG, Aronica E (2014) Metabotropic glutamate receptor 5 in Down’s syndrome hippocampus during development: increased expression in astrocytes. Curr Alzheimer Res 11:694–705

    Article  CAS  PubMed  Google Scholar 

  88. Shrivastava AN, Kowalewski JM, Renner M, Bousset L, Koulakoff A, Melki R, Giaume C, Triller A (2013) β-Amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia 61:1673–1686

    Article  PubMed  Google Scholar 

  89. Xiu J, Nordberg A, Zhang JT, Guan ZZ (2005) Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the α7, α4 and β2 subunits in response to nanomolar concentrations of the β-amyloid peptide1-42. Neurochem Int 47:281–290

    Article  CAS  PubMed  Google Scholar 

  90. Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of α7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225

    Article  CAS  PubMed  Google Scholar 

  91. Chiarini A, Gardenal E, Whitfield JF, Chakravarthy B, Armato U, Dal Pra I (2015) Preventing the spread of Alzheimer’s disease neuropathology: a role for calcilytics? Curr Pharm Biotechnol 16:696–706

    Article  CAS  PubMed  Google Scholar 

  92. Dal Pra I, Chiarini A, Pacchiana R, Gardenal E, Chakravarthy B, Whitfield JF, Armato U (2014) Calcium-sensing receptors of human astrocyte-Neuron teams: amyloid-beta-driven mediators and therapeutic targets of Alzheimer’s disease. Curr Neuropharmacol 12:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, Walaas SI (1996) Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration 5:169–176

    Article  CAS  PubMed  Google Scholar 

  94. Kurumatani T, Fastbom J, Bonkale WL, Bogdanovic N, Winblad B, Ohm TG, Cowburn RF (1998) Loss of inositol 1,4,5-trisphosphate receptor sites and decreased PKC levels correlate with staging of Alzheimer’s disease neurofibrillary pathology. Brain Res 796:209–221

    Article  CAS  PubMed  Google Scholar 

  95. Young LT, Kish SJ, Li PP, Warsh JJ (1988) Decreased brain [3H]inositol 1,4,5-trisphosphate binding in Alzheimer’s disease. Neurosci Lett 94:198–202

    Article  CAS  PubMed  Google Scholar 

  96. Jin JK, Choi JK, Wasco W, Buxbaum JD, Kozlowski PB, Carp RI, Kim YS, Choi EK (2005) Expression of calsenilin in neurons and astrocytes in the Alzheimer’s disease brain. Neuroreport 16:451–455

    Article  CAS  PubMed  Google Scholar 

  97. Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ, Baxter L, Gelsthorpe C, Forster G, Matthews FE, Brayne C, Simpson JE (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39:788–799

    Article  CAS  PubMed  Google Scholar 

  98. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3rd, Kraner SD, Norris CM (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Norris CM, Kadish I, Blalock EM, Chen KC, Thibault V, Porter NM, Landfield PW, Kraner SD (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25:4649–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Daschil N, Geisler S, Obermair GJ, Humpel C (2014) Short- and long-term treatment of mouse cortical primary astrocytes with beta-amyloid differentially regulates the mRNA expression of L-type calcium channels. Pharmacology 93:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, Gelsthorpe C, Baxter L, Forster G, Matthews FE, Brayne C, Wharton SB (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging 32:1795–1807

    Article  CAS  PubMed  Google Scholar 

  102. Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci U S A 110:11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Scholl M, Chiotis K, Thordardottir S, Graff C, Wall A, Langstrom B, Nordberg A (2016) Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139:922–936

    Article  PubMed  PubMed Central  Google Scholar 

  104. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016a) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R (2012) IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflammation 9:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stenovec M, Kreft M, Grilc S, Pangrsic T, Zorec R (2008) EAAT2 density at the astrocyte plasma membrane and Ca2+-regulated exocytosis. Mol Membr Biol 25:203–215

    Article  CAS  PubMed  Google Scholar 

  107. Vardjan N, Verkhratsky A, Zorec R (2015) Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases? Cell Transplant 24:599–612

    Article  PubMed  Google Scholar 

  108. Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgacevski J, Kreft M, Zorec R (2013) Astrocytic vesicle mobility in health and disease. Int J Mol Sci 14:11238–11258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Potokar M, Kreft M, Pangrsic T, Zorec R (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329:678–683

    Article  CAS  PubMed  Google Scholar 

  110. Stenovec M, Kreft M, Grilc S, Potokar M, Kreft ME, Pangrsic T, Zorec R (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818

    Article  CAS  PubMed  Google Scholar 

  111. Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M, Grilc S, Pekny M, Zorec R (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–1219

    PubMed  Google Scholar 

  112. Potokar M, Stenovec M, Kreft M, Kreft ME, Zorec R (2008) Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 56:135–144

    Article  PubMed  Google Scholar 

  113. Potokar M, Kreft M, Lee SY, Takano H, Haydon PG, Zorec R (2009) Trafficking of astrocytic vesicles in hippocampal slices. Biochem Biophys Res Commun 390:1192–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  CAS  PubMed  Google Scholar 

  115. Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ (2000) Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20:1657–1665

    CAS  PubMed  Google Scholar 

  116. Dorfman VB, Pasquini L, Riudavets M, Lopez-Costa JJ, Villegas A, Troncoso JC, Lopera F, Castano EM, Morelli L (2010) Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer’s disease. Neurobiol Aging 31:1743–1757

    Article  CAS  PubMed  Google Scholar 

  117. Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, Park SA, Mook-Jung I (2016) Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 12:784–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fern RF, Matute C, Stys PK (2014) White matter injury: ischemic and nonischemic. Glia 62:1780–1789

    Article  PubMed  Google Scholar 

  120. Matute C (2010) Calcium dyshomeostasis in white matter pathology. Cell Calcium 47:150–157

    Article  CAS  PubMed  Google Scholar 

  121. Bartzokis G (2011) Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 32:1341–1371

    Article  CAS  PubMed  Google Scholar 

  122. Peters A, Verderosa A, Sethares C (2008) The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56:1151–1161

    Article  PubMed  Google Scholar 

  123. Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5:57–67

    Article  PubMed  Google Scholar 

  124. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  CAS  PubMed  Google Scholar 

  125. Jantaratnotai N, Ryu JK, Kim SU, McLarnon JG (2003) Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport 14:1429–1433

    Article  CAS  PubMed  Google Scholar 

  126. Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ (2009) Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57:54–65

    Article  PubMed  PubMed Central  Google Scholar 

  127. Burns JM, Church JA, Johnson DK, Xiong C, Marcus D, Fotenos AF, Snyder AZ, Morris JC, Buckner RL (2005) White matter lesions are prevalent but differentially related with cognition in aging and early Alzheimer disease. Arch Neurol 62:1870–1876

    Article  PubMed  Google Scholar 

  128. Heneka MT, O'Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  CAS  PubMed  Google Scholar 

  129. Schubert P, Morino T, Miyazaki H, Ogata T, Nakamura Y, Marchini C, Ferroni S (2000) Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann N Y Acad Sci 903:24–33

    Article  CAS  PubMed  Google Scholar 

  130. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Van Leuven F (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid {beta} requires P2X7 receptor expression. J Immunol 182:4378–4385

    Article  CAS  PubMed  Google Scholar 

  133. Lotz M, Ebert S, Esselmann H, Iliev AI, Prinz M, Wiazewicz N, Wiltfang J, Gerber J, Nau R (2005) Amyloid β peptide 1-40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem 94:289–298

    Article  CAS  PubMed  Google Scholar 

  134. Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278–292

    Article  CAS  PubMed  Google Scholar 

  135. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956

    Article  CAS  PubMed  Google Scholar 

  136. Rodriguez JJ, Witton J, Olabarria M, Noristani HN, Verkhratsky A (2010) Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death Dis 1:e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors research was supported by Alzheimer’s Research Trust (UK) Programme Grant (ART/PG2004A/1) to A.V. and J.J.R.; by National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678) to V.P.; by the grants P3 310, J3 4051, J3 3632, J3 6790, J3 7605 and J3 4146 from the Slovenian Research Agency (ARRS) and the EduGlia ITN EU grant to R.Z. and A.V.; by Plan Nacional de I+D+I 2008–2011 and ISCIII-Subdirección General de Evaluación y Fomento de la investigación co-financed by FEDER (grant PI10/02738 to J.J.R. and A.V.); by the Government of the Basque Country grants AE-2010-1-28, AEGV10/16 and GV-2011111020 to J.J.R. A.V. was also supported by the Federal Target Program “Research and development in priority areas of the development of the scientific and technological complex of Russia for 2014–2020” of the Ministry of Education and Science of Russia, contract 14.581.21.0016 (Project ID RFMEFI58115X0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Verkhratsky, A., Zorec, R., Rodriguez, J.J., Parpura, V. (2017). Neuroglia: Functional Paralysis and Reactivity in Alzheimer’s Disease and Other Neurodegenerative Pathologies. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_17

Download citation

Publish with us

Policies and ethics