Skip to main content

Dim Line Tracking Using Deep Learning for Autonomous Line Following Robot

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 573))

Included in the following conference series:

Abstract

The proposed approach improves preprocessing of image data for the line following robot. The tracking algorithm uses Track–Before–Detect algorithm using Viterbi algorithm. Proposed technique uses deep learning for the estimation of the line and background area. The segmentation improves detection of weak line on the image disturbed by numerous additive patterns and Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrand, B., Baerveldt, A.: A vision-based row-following system for agricultural field machinery. Mechatronics 15(2), 251–269 (2005)

    Article  Google Scholar 

  2. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999)

    MATH  Google Scholar 

  3. Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  4. Golightly, I., Jones, D.: Visual control of an unmanned aerial vehicle for power line inspection. In: 12th International Conference on Advanced Robotics, ICAR 2005, pp. 288–295, July 2005

    Google Scholar 

  5. Haykin, S., Moher, M.: Communication Systems. Wiley, Chichester (2009)

    Google Scholar 

  6. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  7. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256, May 2010

    Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). http://dx.doi.org/10.1038/nature14539

    Article  Google Scholar 

  9. Matczak, G., Mazurek, P.: History dependent viterbi algorithm for navigation purposes of line following robot. Image Process. Commun. 20(4), 5–11 (2016)

    Google Scholar 

  10. Mazurek, P.: Hierarchical track-before-detect algorithm for tracking of amplitude modulated signals. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 3. AISC, vol. 102, pp. 511–518. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23154-4_56

    Chapter  Google Scholar 

  11. Mazurek, P.: Line estimation using the viterbi algorithm and track-before-detect approach for line following mobile robots. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793, September 2014

    Google Scholar 

  12. Mazurek, P., Putynkowski, G.: Frequency management for electromagnetic continuous wave conductivity meters. Sensors 16(4), 490 (2016)

    Article  Google Scholar 

  13. Mazurek, P.: Directional filter and the Viterbi algorithm for line following robots. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 428–435. Springer, Cham (2014). doi:10.1007/978-3-319-11331-9_51

    Google Scholar 

  14. Ollis, M.: Perception Algorithms for a Harvesting Robot. CMU-RI-TR-97-43, Carnegie Mellon University (1997)

    Google Scholar 

  15. Scott, T.A., Nilanjan, R.: Biomedical Image Analysis: Tracking. Morgan & Claypool, San Rafael (2005)

    Google Scholar 

  16. Stone, L., Barlow, C., Corwin, T.: Bayesian Multiple Target Tracking. Artech House, Norwood (1999)

    MATH  Google Scholar 

  17. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  18. Wang, R.: Edge detection using convolutional neural network. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 12–20. Springer, Cham (2016). doi:10.1007/978-3-319-40663-3_2

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the UE EFRR ZPORR project Z/2.32/I/1.3.1/267/05 “Szczecin University of Technology – Research and Education Center of Modern Multimedia Technologies” (Poland).

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Matczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Matczak, G., Mazurek, P. (2017). Dim Line Tracking Using Deep Learning for Autonomous Line Following Robot. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds) Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-57261-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57261-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57260-4

  • Online ISBN: 978-3-319-57261-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics