Skip to main content

Scaffolding c-Jun N-Terminal Kinase Cascades: Mechanistic Insights from the Reconstituted Arrestin-JNK Cascades

  • Chapter
  • First Online:
The Structural Basis of Arrestin Functions

Abstract

Although other subtypes appear to interact at least with some kinases in the ASK1-MKK4/7-JNK1/2/3 cascades, only arrestin-3 facilitates JNK activation in cells. While cell-based assays are suggestive, only the experiments with purified proteins can definitively show which protein-protein interactions are direct. Pure arrestin-3 was shown to facilitate the phosphorylation of JNK3 and other isoforms by MKK4 and MKK7. Biphasic dependence of the effect on arrestin-3 concentration showed that arrestin acts as a simple scaffold, bringing the kinases (MKKs ) and their substrates (JNKs ) into close proximity, rather than by activating MKKs or their substrate JNKs. Dissections of arrestin-3 elements involved allowed the identification of a surprisingly small 25-residue peptide that binds all relevant kinases and promotes JNK3 activation in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we use the systematic names of arrestin proteins: arrestin-1 (historic names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin; for unclear reasons its gene is called “arrestin 3” in the HUGO database).

References

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Bardwell L (2006) Mechanisms of MAPK signalling specificity. Biochem Soc Trans 34:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitkreutz A, Tyers M (2002) MAPK signaling specificity: it takes two to tango. Trends Cell Biol 12:254–257

    Article  CAS  PubMed  Google Scholar 

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    Article  CAS  PubMed  Google Scholar 

  • Good M, Tang G, Singleton J, Reményi A, Lim WA (2009) The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 136:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Gurevich VV (2006a) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2011) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Haeusgen W, Herdegen T, Waetzig V (2011) The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 90:536–544

    Article  CAS  PubMed  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880

    Article  CAS  PubMed  Google Scholar 

  • Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006a) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–9772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006b) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277:30760–30768

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J et al (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci 109:18407–18412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  • Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–837

    Article  CAS  PubMed  Google Scholar 

  • Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV (2013) Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem 288:37332–37342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by β-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  • Macdonald SG, Crews CM, Wu L, Driller J, Clark R, Erikson RL, McCormick F (1993) Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol Cell Biol 13:6615–6620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  PubMed  Google Scholar 

  • McDonald PH, Chow C-W, Miller WE, Laporte SA, Field ME, Lin F-T, Davis RJ, Lefkowitz RJ (2000) β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Miller WE, Lefkowitz RJ (2001) Expanding roles for β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 13:139–145

    Article  CAS  PubMed  Google Scholar 

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis R, Johnson G, Karin M (1994) Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266:1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Buczyłko J, Imami NR, McDowell JH, Hargrave PA (1991) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem 266:15334–15339

    CAS  PubMed  Google Scholar 

  • Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775

    Article  CAS  PubMed  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  • Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 activation. J Biol Chem 286:27894–27901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng W-C, Staus DP, Hilger D, Uysal S, Huang L-Y et al (2013) Structure of active [bgr]-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and Z “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Gurevich EV, Gurevich VV (2007) Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J Neurochem 103:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648

    CAS  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Tatebayashi K, Saito H (2005) Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell 18:295–306

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Destrument A, Tournier C (2007) Physiological roles of MKK4 and MKK7: insights from animal models. Biochim Biophys Acta (BBA) Mol Cell Res 1773:1349–1357

    Article  CAS  Google Scholar 

  • Whitmarsh AJ (2006) The JIP family of MAPK scaffold proteins. Biochem Soc Trans 34:828–832

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1998) Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23:481–485

    Article  CAS  PubMed  Google Scholar 

  • Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 83:1174–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104:12011–12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011a) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Kaoud TS, Dalby KN, Gurevich VV (2011b) Nonvisual arrestins function as simple scaffolds assembling the MKK4–JNK3a2 signaling complex. Biochemistry 50:10520–10529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV (2013) JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem 288:28535–28547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Kook S, Gurevich EV, Gurevich VV (2014a) Arrestin-dependent activation of JNK family kinases. In: Gurevich VV (ed) Arrestins—pharmacology and therapeutic potential. Springer, Berlin, pp 259–280

    Chapter  Google Scholar 

  • Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV (2014b) Arrestin-3 binds the MAP kinase JNK3a2 via multiple sites on both domains. Cell Signal 26:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Stoy H, Kaoud TS, Perry NA, Chen Q, Perez A, Els-Heindl S, Slagis JV, Iverson TM, Beck-Sickinger AG et al (2016) Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep 6:21025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289:20991–21002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Li Q, Lin S-C, Wu Z, Han J, Ye Z (2007) Differential requirement of MKK4 and MKK7 in JNK activation by distinct scaffold proteins. FEBS Lett 581:196–202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhan, X., Gurevich, V.V., Gurevich, E.V. (2017). Scaffolding c-Jun N-Terminal Kinase Cascades: Mechanistic Insights from the Reconstituted Arrestin-JNK Cascades. In: Gurevich, V. (eds) The Structural Basis of Arrestin Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-57553-7_14

Download citation

Publish with us

Policies and ethics