Skip to main content

Perioperative Biologic Perturbation and Cancer Surgery: Targeting the Adrenergic-Inflammatory Response and Microcirculatory Dysregulation

  • Chapter
  • First Online:
Perioperative Inflammation as Triggering Origin of Metastasis Development

Abstract

Many of the physiological responses that comprise the surgical stress response are known to promote cancer-signaling pathways. Tissue resection and exposure to the pharmaco-physiological stressors of anesthesia required for surgery activate local and systemic inflammatory cytokines, up-regulate cyclooxygenase with increased prostaglandin production, and increase adrenergic activity. The activation of neuro-hormonal pathways is increasingly linked with cancer propagation. Retrospective evidence suggests that the use of anesthetic techniques and adjuncts that modulate these pathways and commonly available to practicing anesthesiologists may benefit patients scheduled for cancer surgery. Minimising the inflammatory response, preventing perioperative immunosuppression, and optimizing fluid delivery may have oncological benefits (improved disease free survival, reduced postoperative complications with timely delivery of adjuvant therapies) that extend beyond enhanced postoperative recovery. This review will consider key components of local and systemic inflammatory response, relevant immune cell mediators, perioperative endothelial dysfunction, and relevant perioperative therapies specific to the care of the patient receiving cancer surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tohme S et al (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76(6):1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Camara O et al (2006) Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells. World J Surg Oncol 4:67

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tvedskov TF et al (2012) Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer. Breast Cancer Res Treat 131(1):223–229

    Article  PubMed  Google Scholar 

  4. Akiyoshi S et al (2013) Laparoscopic surgery minimizes the surgical manipulation of isolated tumor cells leading to decreased metastasis compared to open surgery for colorectal cancer. Surg Today 43(1):20–25

    Article  PubMed  Google Scholar 

  5. Eguchi H et al (2009) Presence of minute cancer cell dissemination in peritoneal lavage fluid detected by reverse transcription PCR is an independent prognostic factor in patients with resectable pancreatic cancer. Surgery 146(5):888–895

    Article  PubMed  Google Scholar 

  6. Ge MJ et al (2006) Observation of circulating tumour cells in patients with non-small cell lung cancer by real-time fluorescent quantitative reverse transcriptase-polymerase chain reaction in perioperative period. J Cancer Res Clin Oncol 132(4):248–256

    Article  CAS  PubMed  Google Scholar 

  7. Katoh H et al (2009) Prognostic significance of peritoneal tumour cells identified at surgery for colorectal cancer. Br J Surg 96(7):769–777

    Article  CAS  PubMed  Google Scholar 

  8. Li J et al (2005) [Detection of blood dissemination during the operation of lung cancer and its significance]. Zhonghua wai ke za zhi [Chin J Surg] 43(2):76–79

    Google Scholar 

  9. Rolle A et al (2005) Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: a preliminary report. World J Surg Oncol 3(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sawabata N et al (2007) Circulating tumor cells in peripheral blood caused by surgical manipulation of non-small-cell lung cancer: pilot study using an immunocytology method. Gen Thorac Cardiovasc Surg 55(5):189–192

    Article  PubMed  Google Scholar 

  11. Temesi R et al (2012) Impact of positive intraabdominal lavage cytology on the long-term prognosis of colorectal cancer patients. World J Surg 36(11):2714–2721

    Article  PubMed  Google Scholar 

  12. Tsakok T et al (2012) Washout after lobectomy: is water more effective than normal saline in preventing local recurrence? Interact Cardiovasc Thorac Surg 14(2):200–204

    Article  PubMed  Google Scholar 

  13. Weitz J, Herfarth C (2001) Surgical strategies and minimal residual disease detection. Semin Surg Oncol 20(4):329–333

    Article  CAS  PubMed  Google Scholar 

  14. Ma X-L et al (2012) Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pac J Cancer Prev 13(4):1137–1144

    Article  PubMed  Google Scholar 

  15. Yamashita JI et al (2000) Detection of circulating tumor cells in patients with non-small cell lung cancer undergoing lobectomy by video-assisted thoracic surgery: a potential hazard for intraoperative hematogenous tumor cell dissemination. J Thorac Cardiovasc Surg 119(5):899–905

    Article  CAS  PubMed  Google Scholar 

  16. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148

    Article  CAS  PubMed  Google Scholar 

  17. Kurosawa S, Kato M (2008) Anesthetics, immune cells, and immune responses. J Anesth 22(3):263–277

    Article  PubMed  Google Scholar 

  18. Retsky M et al (2013) Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: new findings and a review. Curr Med Chem 20(33):4163–4176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fisher B, Gunduz N, Saffer EA (1983) Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. Cancer Res 43(4):1488–1492

    CAS  PubMed  Google Scholar 

  20. Gunduz N, Fisher B, Saffer EA (1979) Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res 39(10):3861–3865

    CAS  PubMed  Google Scholar 

  21. Benish M et al (2008) Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol 15(7):2042–2052

    Article  PubMed  Google Scholar 

  22. Glasner A et al (2010) Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol 184(5):2449–2457

    Article  CAS  PubMed  Google Scholar 

  23. Goldfarb Y et al (2012) Fish oil attenuates surgery-induced immunosuppression, limits post-operative metastatic dissemination and increases long-term recurrence-free survival in rodents inoculated with cancer cells. Clin Nutr 31(3):396–404

    Article  CAS  PubMed  Google Scholar 

  24. Wada H et al (2007) Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/TH2 cytokine balance. Anesthesiology 106(3):499–506

    Article  CAS  PubMed  Google Scholar 

  25. Jones LW et al (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10(6):598–605

    Article  PubMed  Google Scholar 

  26. Fearon KC et al (2013) Patient optimization for gastrointestinal cancer surgery. Br J Surg 100(1):15–27

    Article  CAS  PubMed  Google Scholar 

  27. Marik PE, Zaloga GP (2010) Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. JPEN J Parenter Enteral Nutr 34(4):378–386

    Article  PubMed  Google Scholar 

  28. Colvin LA, Fallon MT, Buggy DJ (2012) Cancer biology, analgesics, and anaesthetics: is there a link? Br J Anaesth 109(2):140–143

    Article  CAS  PubMed  Google Scholar 

  29. Heaney A, Buggy DJ (2012) Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth 109(Suppl 1):i17–i28

    Article  PubMed  Google Scholar 

  30. Kavanagh T, Buggy DJ (2012) Can anaesthetic technique effect postoperative outcome? Curr Opin Anaesthesiol 25(2):185–198

    Article  CAS  PubMed  Google Scholar 

  31. O’Riain SC et al (2005) Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2. Anesth Analg 100(1):244–249

    Article  PubMed  CAS  Google Scholar 

  32. Huggenberger R et al (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heinrich EL et al (2012) The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron 5(1):5–18

    Article  CAS  PubMed  Google Scholar 

  34. O’Reilly MS et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  35. O’Reilly MS et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  36. Kalish BT et al (2013) The growing role of eicosanoids in tissue regeneration, repair, and wound healing. Prostaglandins Other Lipid Mediat 104–105:130–138

    Article  PubMed  CAS  Google Scholar 

  37. Greco KV et al (2006) Lymphatic regeneration across an incisional wound: inhibition by dexamethasone and aspirin, and acceleration by a micronized purified flavonoid fraction. Eur J Pharmacol 551(1–3):131–142

    Article  CAS  PubMed  Google Scholar 

  38. Narayan K, Cliff WJ (1981) In vivo morphology and ultrastructure of thyroid autografts in rabbit ear chambers. Q J Exp Physiol 66(3):237–252

    Article  CAS  PubMed  Google Scholar 

  39. Ferrandina G et al (2002) Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol 20(4):973–981

    Article  CAS  PubMed  Google Scholar 

  40. Zhang R et al (2009) [Expression of P53, COX2 and CD44V6 in early-stage squamous carcinoma of cervix with lymph vascular space invasion positive and negative and its relationship with prognosis]. Zhonghua Yi Xue Za Zhi 89(47):3341–3345

    Google Scholar 

  41. Gou H-F et al (2011) Expressions of COX-2 and VEGF-C in gastric cancer: correlations with lymphangiogenesis and prognostic implications. J Exp Clin Cancer Res 30:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto I et al (2001) Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer 85(1):93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kopfstein L et al (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170(4):1348–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lutgendorf SK et al (2009) Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain Behav Immun 23(2):176–183

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H et al (2011) Comparison of different loading dose of celecoxib on postoperative anti-inflammation and analgesia in patients undergoing endoscopic nasal surgery-200 mg is equivalent to 400 mg. Pain Med 12(8):1267–1275

    Google Scholar 

  46. Alessandri G et al (1987) Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res 47(16):4243–4247

    CAS  PubMed  Google Scholar 

  47. Karnezis T, Shayan R, Caesar C et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21(2):181–195

    Article  CAS  PubMed  Google Scholar 

  48. Schoppmann SF et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stacker SA, Achen MG (2008) From anti-angiogenesis to anti-lymphangiogenesis: emerging trends in cancer therapy. Lymphat Res Biol 6(3–4):165–172

    Article  CAS  PubMed  Google Scholar 

  50. Viswanathan K, Dhabhar FS (2005) Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation. Proc Natl Acad Sci U S A 102(16):5808–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harvey NL, Gordon EJ (2012) Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vasc cell 4(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hao N-B et al (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Solinas G et al (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  54. Medrek C et al (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kurosawa S (2012) Anesthesia in patients with cancer disorders. Curr Opin Anaesthesiol 25(3):376–384

    Article  CAS  PubMed  Google Scholar 

  56. Powrie F, Coffman RL (1993) Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today 14(6):270–274

    Article  CAS  PubMed  Google Scholar 

  57. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  58. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mack VE et al (1996) Dominance of T-helper 2-type cytokines after severe injury. Arch Surg 131(12):1303–1308. Discussion 1308–9

    Article  CAS  PubMed  Google Scholar 

  60. Kurosawa S et al (1993) Early appearance and activation of natural killer cells in tumor-infiltrating lymphoid cells during tumor development. Eur J Immunol 23(5):1029–1033

    Article  CAS  PubMed  Google Scholar 

  61. Kurosawa S et al (1995) Early-appearing tumour-infiltrating natural killer cells play a crucial role in the generation of anti-tumour T lymphocytes. Immunology 85(2):338–346

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huitink JM et al (2010) Volatile anesthetics modulate gene expression in breast and brain tumor cells. Anesth Analg 111(6):1411–1415

    Article  CAS  PubMed  Google Scholar 

  63. Kos FJ, Engleman EG (1996) Immune regulation: a critical link between NK cells and CTLs. Immunol Today 17(4):174–176

    Article  CAS  PubMed  Google Scholar 

  64. Fujisawa T, Yamaguchi Y (1997) Autologous tumor killing activity as a prognostic factor in primary resected nonsmall cell carcinoma of the lung. Cancer 79(3):474–481

    Article  CAS  PubMed  Google Scholar 

  65. Koda K et al (1997) Preoperative natural killer cell activity: correlation with distant metastases in curatively research colorectal carcinomas. Int Surg 82(2):190–193

    CAS  PubMed  Google Scholar 

  66. Takeuchi H et al (2001) Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol 96(2):574–578

    Article  CAS  PubMed  Google Scholar 

  67. Paramanathan A, Saxena A, Morris DL (2014) A systematic review and meta-analysis on the impact of pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid tumours. Surg Oncol 23(1):31–39

    Article  PubMed  Google Scholar 

  68. Sharma D et al (2014) Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 229(8):1005–1015

    Article  CAS  PubMed  Google Scholar 

  69. Goh BKP et al (2016) Blood neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios are independent prognostic factors for surgically resected gastrointestinal stromal tumors. Surgery 159(4):1146–1156

    Article  PubMed  Google Scholar 

  70. Que Y et al (2015) Preoperative platelet-lymphocyte ratio is superior to neutrophil-lymphocyte ratio as a prognostic factor for soft-tissue sarcoma. BMC Cancer 15:648

    Article  PubMed  PubMed Central  Google Scholar 

  71. Evans C et al (2009) Impact of surgery on immunologic function: comparison between minimally invasive techniques and conventional laparotomy for surgical resection of colorectal tumors. Am J Surg 197(2):238–245

    Article  CAS  PubMed  Google Scholar 

  72. Kuroda E, Yamashita U (2003) Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J Immunol 170(2):757–764

    Article  CAS  PubMed  Google Scholar 

  73. Ishikawa M et al (2009) Perioperative immune responses in cancer patients undergoing digestive surgeries. World J Surg Oncol 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  74. Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

    Article  CAS  PubMed  Google Scholar 

  75. Greenfeld K et al (2007) Immune suppression while awaiting surgery and following it: dissociations between plasma cytokine levels, their induced production, and NK cell cytotoxicity. Brain Behav Immun 21(4):503–513

    Article  CAS  PubMed  Google Scholar 

  76. Vallejo R et al (2003) Perioperative immunosuppression in cancer patients. J Environ Pathol Toxicol Oncol 22(2):139–146

    Article  PubMed  Google Scholar 

  77. Grailer JJ et al (2014) Induction of M2 regulatory macrophages through the β2-adrenergic receptor with protection during endotoxemia and acute lung injury. J Innate Immun 6(5):607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horowitz M et al (2015) Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 12:213–226

    Article  CAS  PubMed  Google Scholar 

  79. Sloan EK et al (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70(18):7042–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Watkins JL et al (2015) Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121(19):3444–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cata JP et al (2013) Effects of surgery, general anesthesia, and perioperative epidural analgesia on the immune function of patients with non-small cell lung cancer. J Clin Anesth 25(4):255–262

    Article  CAS  PubMed  Google Scholar 

  82. Nosotti M et al (2011) Leukocyte subsets dynamics following open pulmonary lobectomy for lung cancer: a prospective, observational study. Interact Cardiovasc Thorac Surg 13(3):262–266

    Article  PubMed  Google Scholar 

  83. Ramirez MF et al (2015) Innate immune function after breast, lung, and colorectal cancer surgery. J Surg Res 194(1):185–193

    Article  CAS  PubMed  Google Scholar 

  84. Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Madden KS, Sanders VM, Felten DL (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448

    Article  CAS  PubMed  Google Scholar 

  86. Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76(12):2421–2438

    CAS  PubMed  Google Scholar 

  87. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237

    Article  CAS  PubMed  Google Scholar 

  88. Shakhar G, Ben-Eliyahu S (2003) Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol 10(8):972–992

    Article  PubMed  Google Scholar 

  89. Moore CM et al (1994) Effects of extradural anaesthesia on interleukin-6 and acute phase response to surgery. Br J Anaesth 72(3):272–279

    Article  CAS  PubMed  Google Scholar 

  90. Moore CM et al (1995) Hormonal effects of thoracic extradural analgesia for cardiac surgery. Br J Anaesth 75(4):387–393

    Article  CAS  PubMed  Google Scholar 

  91. Ahlers O et al (2008) Intraoperative thoracic epidural anaesthesia attenuates stress-induced immunosuppression in patients undergoing major abdominal surgery. Br J Anaesth 101(6):781–787

    Article  CAS  PubMed  Google Scholar 

  92. Khadke VV, Khadke SV, Khare A (2012) Oral propranolol—efficacy and comparison of two doses for peri-operative anxiolysis. J Indian Med Assoc 110(7):457–460

    CAS  PubMed  Google Scholar 

  93. Mavridou P et al (2013) Patient’s anxiety and fear of anesthesia: effect of gender, age, education, and previous experience of anesthesia. A survey of 400 patients. J Anesth 27(1):104–108

    Article  PubMed  Google Scholar 

  94. Salvemini D, Kim SF, Mollace V (2013) Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 304(7):R473–R487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buvanendran A et al (2006) Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology 104(3):403–410

    Article  CAS  PubMed  Google Scholar 

  96. Dong H, Zhang Y, Xi H (2012) The effects of epidural anaesthesia and analgesia on natural killer cell cytotoxicity and cytokine response in patients with epithelial ovarian cancer undergoing radical resection. J Int Med Res 40(5):1822–1829

    Article  CAS  PubMed  Google Scholar 

  97. Fant F et al (2013) Thoracic epidural analgesia inhibits the neuro-hormonal but not the acute inflammatory stress response after radical retropubic prostatectomy. Br J Anaesth 110(5):747–757

    Article  CAS  PubMed  Google Scholar 

  98. Frick VO et al (2012) Thoracotomy procedures effect cytokine levels after thoracoabdominal esophagectomy. Oncol Rep 27(1):258–264

    CAS  PubMed  Google Scholar 

  99. Moselli NM et al (2011) Intraoperative epidural analgesia prevents the early proinflammatory response to surgical trauma. Results from a prospective randomized clinical trial of intraoperative epidural versus general analgesia. Ann Surg Oncol 18(10):2722–2731

    Article  PubMed  Google Scholar 

  100. Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  101. Hill JM et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  102. Avogaro A et al (2011) Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care 34(Suppl 2):S285–S290

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chello M et al (2005) Effects of atorvastatin on arterial endothelial function in coronary bypass surgery. Eur J Cardiothorac Surg 28(6):805–810

    Article  PubMed  Google Scholar 

  104. Clapp BR et al (2004) Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res 64(1):172–178

    Article  CAS  PubMed  Google Scholar 

  105. Hu YJ et al (2013) Impact of non-cardiovascular surgery on reactive hyperaemia and arterial endothelial function. Clin Exp Pharmacol Physiol 40(7):466–472

    Article  CAS  PubMed  Google Scholar 

  106. Bhagat K, Vallance P (1997) Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation 96(9):3042–3047

    Google Scholar 

  107. Tonetti MS et al (2007) Treatment of periodontitis and endothelial function. N Engl J Med 356(9):911–920

    Article  CAS  PubMed  Google Scholar 

  108. Farb MG et al (2014) Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity. Obesity 22(2):349–355

    Article  CAS  PubMed  Google Scholar 

  109. Biccard BM, Rodseth RN (2010) The pathophysiology of peri-operative myocardial infarction. Anaesthesia 65(7):733–741

    Article  CAS  PubMed  Google Scholar 

  110. Duque JL et al (1997) Early complications in surgical treatment of lung cancer: a prospective, multicenter study. Grupo Cooperativo de Carcinoma Broncogénico de la Sociedad Española de Neumología y Cirugía Torácica. Ann Thorac Surg 63(4):944–950

    Article  CAS  PubMed  Google Scholar 

  111. Licker M et al (2002) Risk factors for early mortality and major complications following pneumonectomy for non-small cell carcinoma of the lung. Chest 121(6):1890–1897

    Article  PubMed  Google Scholar 

  112. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295

    PubMed  Google Scholar 

  113. Gokce N (2011) Clinical assessment of endothelial function: ready for prime time? Circ Cardiovasc Imaging 4(4):348–350

    Article  PubMed  PubMed Central  Google Scholar 

  114. Aloia TA et al (2014) Return to intended oncologic treatment (RIOT): a novel metric for evaluating the quality of oncosurgical therapy for malignancy. J Surg Oncol 110(2):107–114

    Article  PubMed  Google Scholar 

  115. Gagliato Dde M et al (2014) Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol 32(8):735–744

    Google Scholar 

  116. Marik PE, Lemson J (2014) Fluid responsiveness: an evolution of our understanding. Br J Anaesth 112(4):617–620

    Article  CAS  PubMed  Google Scholar 

  117. Gottschalk A et al (2012) Can regional anaesthesia for lymph-node dissection improve the prognosis in malignant melanoma? Br J Anaesth 109(2):253–259

    Article  CAS  PubMed  Google Scholar 

  118. Pearse RM et al (2014) Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311(21):2181–2190

    Article  CAS  PubMed  Google Scholar 

  119. Rigg JRA et al (2002) Epidural anaesthesia and analgesia and outcome of major surgery: a randomised trial. Lancet 359(9314):1276–1282

    Article  PubMed  Google Scholar 

  120. Lauer S et al (2009) Thoracic epidural anesthesia time-dependently modulates pulmonary endothelial dysfunction in septic rats. Critical Care 13(4):R109

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hiller JG, et al (2016) Neuraxial Anesthesia Reduces Lymphatic Flow: Proof-of-Concept in First In-Human Study. Anesth Analg 123:1325–7

    Google Scholar 

  122. Enigk F et al (2014) Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury. BMC Anesthesiol 14:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zhou D et al (2012) Effects of anesthetic methods on preserving anti-tumor T-helper polarization following hepatectomy. World J Gastroenterol 18(24):3089–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nowarski R et al (2013) Innate immune cells in inflammation and cancer. Cancer Immunol Res 1(2):77–84

    Article  CAS  PubMed  Google Scholar 

  125. Kawasaki T et al (2007) Effects of epidural anaesthesia on surgical stress-induced immunosuppression during upper abdominal surgery. Br J Anaesth 98(2):196–203

    Article  CAS  PubMed  Google Scholar 

  126. Rao VSR et al (2006) Potential prognostic and therapeutic roles for cytokines in breast cancer (Review). Oncol Rep 15(1):179–185

    CAS  PubMed  Google Scholar 

  127. Xu YJ et al (2014) Effect of thoracic epidural anaesthesia on serum vascular endothelial growth factor C and cytokines in patients undergoing anaesthesia and surgery for colon cancer. Br J Anaesth 113 Suppl 1:i49–55

    Google Scholar 

  128. Yokoyama M et al (2005) The effects of continuous epidural anesthesia and analgesia on stress response and immune function in patients undergoing radical esophagectomy. Anesth Analg 101(5):1521–1527

    Article  CAS  PubMed  Google Scholar 

  129. Volk T et al (2003) Stress induced IL-10 does not seem to be essential for early monocyte deactivation following cardiac surgery. Cytokine 24(6):237–243

    Article  CAS  PubMed  Google Scholar 

  130. Tønnesen E, Wahlgreen C (1988) Influence of extradural and general anaesthesia on natural killer cell activity and lymphocyte subpopulations in patients undergoing hysterectomy. Br J Anaesth 60(5):500–507

    Article  PubMed  Google Scholar 

  131. Biki B et al (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 109(2):180–187

    Article  PubMed  Google Scholar 

  132. de Oliveira GSJ et al (2011) Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Reg Anesth Pain Med 36(3):271–277

    Article  PubMed  Google Scholar 

  133. Hiller J et al (2010) A retrospective observational study examining the admission arterial to end-tidal carbon dioxide gradient in intubated major trauma patients. Anaesth Intensive Care 38(2):302–306

    CAS  PubMed  Google Scholar 

  134. Riedel BJ, Wright IG (1997) Epidural anesthesia in coronary artery bypass grafting surgery. Curr Opin Cardiol 12(6):515–521

    Article  CAS  PubMed  Google Scholar 

  135. Nelson CJ, Lysle DT (1998) Severity, time, and beta-adrenergic receptor involvement in surgery-induced immune alterations. J Surg Res 80(2):115–122

    Article  CAS  PubMed  Google Scholar 

  136. Woiciechowsky C et al (1998) Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 4(7):808–813

    Article  CAS  PubMed  Google Scholar 

  137. Zaugg M et al (1999) Beneficial effects from beta-adrenergic blockade in elderly patients undergoing noncardiac surgery. Anesthesiology 91(6):1674–1686

    Article  CAS  PubMed  Google Scholar 

  138. Blessberger H et al (2014) Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst Rev 9:CD004476

    Google Scholar 

  139. Mostafaie K, Bedenis R, Harrington D (2015) Beta-adrenergic blockers for perioperative cardiac risk reduction in people undergoing vascular surgery. Cochrane Database Syst Rev 1:CD006342

    Google Scholar 

  140. POISE Study Group et al (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371(9627):1839–1847

    Google Scholar 

  141. Ashes C et al (2013) Selective β1-antagonism with bisoprolol is associated with fewer postoperative strokes than atenolol or metoprolol: a single-center cohort study of 44,092 consecutive patients. Anesthesiology 119(4):777–787

    Article  CAS  PubMed  Google Scholar 

  142. Melhem-Bertrandt A et al (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29(19):2645–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Powe DG et al (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1(7):628–638

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhu Y et al (2014) Effect of perioperative parecoxib on postoperative pain and local inflammation factors PGE2 and IL-6 for total knee arthroplasty: a randomized, double-blind, placebo-controlled study. Eur J Orthop Surg Traumatol 24(3):395–401

    Article  PubMed  Google Scholar 

  145. Wu Q et al (2013) The efficacy of parecoxib on systemic inflammatory response associated with cardiopulmonary bypass during cardiac surgery. Br J Clin Pharmacol 75(3):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ng A, Smith G, Davidson AC (2003) Analgesic effects of parecoxib following total abdominal hysterectomy. Br J Anaesth 90(6):746–749

    Article  CAS  PubMed  Google Scholar 

  147. Riest G et al (2008) Preventive effects of perioperative parecoxib on post-discectomy pain. Br J Anaesth 100(2):256–262

    Article  CAS  PubMed  Google Scholar 

  148. Wattchow DA et al (2009) Clinical trial: the impact of cyclooxygenase inhibitors on gastrointestinal recovery after major surgery—a randomized double blind controlled trial of celecoxib or diclofenac vs. placebo. Aliment Pharmacol Ther 30(10):987–998

    Article  CAS  PubMed  Google Scholar 

  149. Bar-Yosef S et al (2001) Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology 94(6):1066–1073

    Article  CAS  PubMed  Google Scholar 

  150. Melamed R et al (2005) Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun 19(2):114–126

    Google Scholar 

  151. Yakar I et al (2003) Prostaglandin e(2) suppresses NK activity in vivo and promotes postoperative tumor metastasis in rats. Ann Surg Oncol 10(4):469–479

    Google Scholar 

  152. Backhus LM et al (2006) Perioperative cyclooxygenase 2 inhibition to reduce tumor cell adhesion and metastatic potential of circulating tumor cells in non-small cell lung cancer. J Thorac Cardiovasc Surg 132(2):297–303

    Article  CAS  PubMed  Google Scholar 

  153. Goldfarb Y et al (2011) Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 253(4):798–810

    Article  PubMed  Google Scholar 

  154. Diperna CA et al (2003) Cyclooxygenase-2 inhibition decreases primary and metastatic tumor burden in a murine model of orthotopic lung adenocarcinoma. J Thorac Cardiovasc Surg 126(4):1129–1133

    Article  CAS  PubMed  Google Scholar 

  155. Qadri SSA et al (2005) Surgically induced accelerated local and distant tumor growth is significantly attenuated by selective COX-2 inhibition. Ann Thorac Surg 79(3):990–995. Discussion 990–5

    Article  PubMed  Google Scholar 

  156. Tanaka T et al (2005) Treatment of lung cancer using clinically relevant oral doses of the cyclooxygenase-2 inhibitor rofecoxib: potential value as adjuvant therapy after surgery. Ann Surg 241(1):168–178

    PubMed  PubMed Central  Google Scholar 

  157. Zhang M et al (2011) Inhibitory effect of celecoxib in lung carcinoma by regulation of cyclooxygenase-2/cytosolic phospholipase A2 and peroxisome proliferator-activated receptor gamma. Mol Cell Biochem 355(1–2):233–240

    Article  CAS  PubMed  Google Scholar 

  158. Iwata C et al (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67(21):10181–10189

    Google Scholar 

  159. Ruan D, So S-P (2014) Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci 116(1):43–50

    Google Scholar 

  160. Timoshenko AV et al (2006) COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 94(8):1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ungefroren H et al (2011) Interaction of tumor cells with the microenvironment. Cell Commun Signal 9:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xin X et al (2012) Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest 92(8):1115–1128

    Article  CAS  PubMed  Google Scholar 

  163. Karnezis T, Shayan R, Fox S et al (2012) The connection between lymphangiogenic signalling and prostaglandin biology: a missing link in the metastatic pathway. Oncotarget 3(8):893–906

    Article  PubMed  Google Scholar 

  164. Roche-Nagle G et al (2004) Antimetastatic activity of a cyclooxygenase-2 inhibitor. Br J Cancer 91(2):359–365

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Costa C et al (2002) Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol 55(6):429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Khuri FR et al (2001) Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 7(4):861–867

    CAS  PubMed  Google Scholar 

  167. Liu H et al (2011) COX-2 expression is correlated with VEGF-C, lymphangiogenesis and lymph node metastasis in human cervical cancer. Microvasc Res 82(2):131–140

    Article  CAS  PubMed  Google Scholar 

  168. Bertagnolli MM et al (2009) Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res 2(4):310–321

    Article  CAS  Google Scholar 

  169. Steinbach G et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946–1952

    Article  CAS  PubMed  Google Scholar 

  170. Mao JT et al (2006) Celecoxib decreases Ki-67 proliferative index in active smokers. Clin Cancer Res 12(1):314–320

    Article  CAS  PubMed  Google Scholar 

  171. Mao JT et al (2011) Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev Res 4(7):984–993

    Article  CAS  Google Scholar 

  172. Slatore CG et al (2009) Association of nonsteroidal anti-inflammatory drugs with lung cancer: results from a large cohort study. Cancer Epidemiol Biomarkers Prev 18(4):1203–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Altorki NK et al (2003) Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 21(14):2645–2650

    Article  CAS  PubMed  Google Scholar 

  174. Edelman MJ et al (2008) Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy—Cancer and Leukemia Group B Trial 30203. J Clin Oncol 26(6):848–855

    Article  CAS  PubMed  Google Scholar 

  175. Groen HJM et al (2011) Randomized, placebo-controlled phase III study of docetaxel plus carboplatin with celecoxib and cyclooxygenase-2 expression as a biomarker for patients with advanced non-small-cell lung cancer: the NVALT-4 study. J Clin Oncol 29(32):4320–4326

    Article  CAS  PubMed  Google Scholar 

  176. Koch A et al (2011) Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: a double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur J Cancer 47(10):1546–1555

    Article  CAS  PubMed  Google Scholar 

  177. Mutter R et al (2009) A phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer. Clin Cancer Res 15(6):2158–2165

    Article  CAS  PubMed  Google Scholar 

  178. Khuri FR (2011) The dawn of a revolution in personalized lung cancer prevention. Cancer Prev Res 4(7):949–953

    Article  CAS  Google Scholar 

  179. Forget P et al (2010) Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg 110(6):1630–1635

    Article  CAS  PubMed  Google Scholar 

  180. Forget P et al (2014) Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. Br J Anaesth 113(Suppl 1):i82–i87

    Article  CAS  PubMed  Google Scholar 

  181. Retsky M, Demicheli R et al (2012) Promising development from translational or perhaps anti-translational research in breast cancer. Clin Transl Med 1(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  182. Retsky M, Rogers R et al (2012) NSAID analgesic ketorolac used perioperatively may suppress early breast cancer relapse: particular relevance to triple negative subgroup. Breast Cancer Res Treat 134(2):881–888

    Article  CAS  PubMed  Google Scholar 

  183. Demicheli R et al (2008) Recurrence dynamics does not depend on the recurrence site. Breast Cancer Res 10(5):R83

    Article  PubMed  PubMed Central  Google Scholar 

  184. Dhawan D et al (2010) Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol Cancer Ther 9(5):1371–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sooriakumaran P et al (2009) A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 29(5):1483–1488

    Google Scholar 

  186. Liu J-F et al (2008) The effects of a COX-2 inhibitor meloxicam on squamous cell carcinoma of the esophagus in vivo. Int J Cancer 122(7):1639–1644

    Google Scholar 

  187. Liu J-F et al (2009) A preliminary study on the postoperative survival of patients given aspirin after resection for squamous cell carcinoma of the esophagus or adenocarcinoma of the cardia. Ann Surg Oncol 16(5):1397–1402

    Article  PubMed  Google Scholar 

  188. Gan TJ et al (2003) Consensus guidelines for managing postoperative nausea and vomiting. Anesth Analg 97(1):62–71

    Article  PubMed  Google Scholar 

  189. Inada T, Hirota K, Shingu K (2015) Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation. J Immunotoxicol 12(3):261–265

    Article  CAS  PubMed  Google Scholar 

  190. Inada T, Kubo K, Ueshima H et al (2011) Intravenous anesthetic propofol suppresses prostaglandin E2 production in murine dendritic cells. J Immunotoxicol 8(4):359–366

    Article  CAS  PubMed  Google Scholar 

  191. Kambara T et al (2009) Propofol suppresses prostaglandin E(2) production in human peripheral monocytes. Immunopharmacol Immunotoxicol 31(1):117–126

    Article  CAS  PubMed  Google Scholar 

  192. Wakabayashi S et al (2014) Effects of anesthesia with sevoflurane and propofol on the cytokine/chemokine production at the airway epithelium during esophagectomy. Int J Mol Med 34(1):137–144

    CAS  PubMed  Google Scholar 

  193. Ke JJ et al (2008) A comparison of the effect of total intravenous anaesthesia with propofol and remifentanil and inhalational anaesthesia with isoflurane on the release of pro- and anti-inflammatory cytokines in patients undergoing open cholecystectomy. Anaesth Intensive Care 36(1):74–78

    CAS  PubMed  Google Scholar 

  194. Inada T, Kubo K, Shingu K (2011) Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol. J Anesth 25(4):569–575

    Article  PubMed  Google Scholar 

  195. Kushida A, Inada T, Shingu K (2007) Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 29(3–4):477–486

    Article  CAS  PubMed  Google Scholar 

  196. Wigmore TJ, Mohammed K, Jhanji S (2016) Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology 124(1):69–79

    Article  CAS  PubMed  Google Scholar 

  197. Brinkrolf P, Hahnenkamp K (2014) Systemic lidocaine in surgical procedures: effects beyond sodium channel blockade. Curr Opin Anaesthesiol 27(4):420–425

    Article  CAS  PubMed  Google Scholar 

  198. Herroeder S et al (2007) Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann Surg 246(2):192–200

    Article  PubMed  PubMed Central  Google Scholar 

  199. Yardeni IZ et al (2009) The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg 109(5):1464–1469

    Article  CAS  PubMed  Google Scholar 

  200. Swenson BR et al (2010) Intravenous lidocaine is as effective as epidural bupivacaine in reducing ileus duration, hospital stay, and pain after open colon resection: a randomized clinical trial. Reg Anesth Pain Med 35(4):370–376

    Article  CAS  PubMed  Google Scholar 

  201. Wongyingsinn M et al (2011) Intravenous lidocaine versus thoracic epidural analgesia: a randomized controlled trial in patients undergoing laparoscopic colorectal surgery using an enhanced recovery program. Reg Anesth Pain Med 36(3):241–248

    Article  CAS  PubMed  Google Scholar 

  202. Chang Y-C et al (2014) Local anesthetics induce apoptosis in human breast tumor cells. Anesth Analg 118(1):116–124

    Article  CAS  PubMed  Google Scholar 

  203. Piegeler T et al (2012) Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 117(3):548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lucchinetti E et al (2012) Antiproliferative effects of local anesthetics on mesenchymal stem cells: potential implications for tumor spreading and wound healing. Anesthesiology 116(4):841–856

    Article  CAS  PubMed  Google Scholar 

  205. Fraser SP, Foo I, Djamgoz MBA (2014) Local anaesthetic use in cancer surgery and disease recurrence: role of voltage-gated sodium channels? Br J Anaesth 113(6):899–902

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hiller MBBS (Hons.), GCEpi, FANZCA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hiller, J., Schier, R., Riedel, B. (2017). Perioperative Biologic Perturbation and Cancer Surgery: Targeting the Adrenergic-Inflammatory Response and Microcirculatory Dysregulation. In: Retsky, M., Demicheli, R. (eds) Perioperative Inflammation as Triggering Origin of Metastasis Development. Springer, Cham. https://doi.org/10.1007/978-3-319-57943-6_4

Download citation

Publish with us

Policies and ethics