Skip to main content

A Particle Method for Fluid-Structure Interaction Simulations in Multiple GPUs

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Included in the following conference series:

  • 850 Accesses

Abstract

This chapter is a presentation of the programming philosophy behind a novel numerical particle method for the simulation of the interaction of compressible fluids and elastic structures, specifically designed to run in multiple Graphics Processing Units (GPUs). The code has been developed using the CUDA C Application Programming Interface (API) for fine-grain parallelism in the GPUs and the Message Passing Interface library (MPI) for the distribution of threads in the Central Processing Units (CPUs) and the communication of shared data between GPUs. The numerical algorithm does not use smoothing kernels nor weighting functions for the computation of differential operators. A novel approach is used to compute gradients using averages of radial finite differences and divergences using Gauss’ theorem by approximations based on area integrals around local spheres around each particle. The interactions of the particles inside the fluid are modelled using the isothermal, compressible Navier-Stokes equations and a simple equation of state. The elastic material is modelled using inter-particle springs with damping. Results show the potential of the method for the simulation of flows in complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steger, J.L.: On application of body conforming curvilinear grids for finite difference solution of external flow. Appl. Math. Comput. 10–11, 295–316 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Karki, K.C., Patankar, S.V.: Calculation procedure for viscous incompressible flows in complex geometries. Numer. Heat Transfer 14(3), 295–307 (1988)

    MATH  Google Scholar 

  3. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  4. Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141(2), 153–173 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  7. Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A., Warren, M.S.: Vortex methods for direct numerical simulation of three-dimensional Bluff body flows: application to the sphere at Re = 300, 500 and 1000. J. Comput. Phys. 178(2), 427–463 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koumoutsakos, P.: Active control of vortex-wall interactions. Phys. Fluids 9(12), 3808–3816 (1997)

    Article  Google Scholar 

  9. Strang, G., Fix, G.: An Analysis of the Finite Element Method. SIAM, Wesley-Cambridge Press, Philadelphia (1973)

    MATH  Google Scholar 

  10. Kuzmin, D., Hämäläinen, J.: Finite Element Methods for Computational Fluid Dynamics: A Practical Guide. Computational Science & Engineering. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  11. Löner, R., Morgan, K., Peraire, J., Zienkiewicz, O.C.: The free-lagrange method. In: Fritts, M.J., Crowley, W.P., Trease, H. (eds.) Recent developments in FEM-CFD. Lecture Notes in Physics, pp. 236–254. Springer, Heidelberg (2005)

    Google Scholar 

  12. Schweitzer, M.A.: Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1), 155–196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ziane Khodja, L., Couturier, R., Glersch, A., Bahi, J.M.: Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters. J. Supercomput. 69(1), 200–224 (2014)

    Article  Google Scholar 

  16. Whiting, C.H., Jansen, K.E.: A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1), 93–116 (2001)

    Article  MATH  Google Scholar 

  17. Quarteroni, A.: Numerical Models for Differential Problems. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  18. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  19. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1760 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85(11), 879–890 (2007)

    Article  Google Scholar 

  21. Sigalotti, L.D.G., Klapp, J., Rendon, O., Vargas, C.A., Peña-Polo, F.: On the kernel and particle consistency in smoothed particle hydrodynamics. J. Appl. Numer. Math. 108, 242–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sigalotti, L.D.G., Rendon, O., Klapp, J., Vargas, C.A., y Campos, K.: A new insight into the consistency of Smoothed Particle Hydrodynamics. arXiv:1644200 [physics.com-ph] 21 August 2016

  23. Donea, J., Huerta, A.: Finite Element Flow Problems. Wiley, Hoboken (2003)

    Book  Google Scholar 

  24. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010)

    Article  Google Scholar 

  25. Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: GPUs and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)

    Article  Google Scholar 

  26. NVIDIA CUDA C Programming Guide, version 7.5, Nvidia (2015)

    Google Scholar 

  27. Koshizuka, S., Oka, Y.: Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)

    Google Scholar 

  28. Becerra-Sagredo, J., Mandujano, F., Málaga, C., Klapp, J., Teresa, I.: A template for scalable continuum dynamic simulations in multiple GPUs. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol. 595, pp. 473–484. Springer, Cham (2016). doi:10.1007/978-3-319-32243-8_33

    Chapter  Google Scholar 

  29. Becerra-Sagredo, J.T., Málaga, C., Mandujano, F.: Moments preserving and high-resolution semi-Lagrangian advection scheme. SIAM J. Sci. Comput. 38(4), A2141–A2161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by ABACUS, CONACyT grant EDOMEX-2011-C01-165873. The calculations for this work have been performed in the Abacus I supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Becerra-Sagredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Becerra-Sagredo, J., Sigalotti, L., Klapp, J. (2017). A Particle Method for Fluid-Structure Interaction Simulations in Multiple GPUs. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics