Skip to main content

Morphogenetic and Homeostatic Self-assembled Systems

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

Abstract

As a natural evolution of developments in membrane computing and self-assembly, the time appears ripe to hybridize their principles to explore models capable of exhibiting further properties exhibited by living organisms, while preserving the primary advantages of models in physics, chemistry and computer science, e.g. arising from local interactions of their components and implementable in silico and/or in vitro. We introduce an abstract model named M system, capable of self-assembly and a developmental process, that strikes a balance between these conflicting goals, namely biological realism, physical-chemical realism and computational realism. We demonstrate that such systems are capable of being assembled from scratch from some atomic components, undergo a process of morphogenesis by the unfolding of the self-assembly rules defined by their local interactions, exhibit crucial properties of living cells as the self-healing property or mitosis (cell division), and eventually enter a stable equilibrium of adulthood in which they will continue to function as long as certain conditions in their environment remain. We present some theoretical results on the model, as well as preliminary simulations and experimental results of an M system simulator we have developed to explore this kind of model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P systems. Nat. Comput. 10(1), 3–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardini, F., Brijder, R., Cavaliere, M., Franco, G., Hoogeboom, H.J., Rozenberg, G.: On aggregation in multiset-based self-assembly of graphs. Nat. Comput. 10(1), 17–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blount, P., Sukharev, S.I., Moe, P.C., Schroeder, M.J., Guy, H., Kung, C.: Membrane topology and multimeric structure of a mechanosensitive channel protein of escherichia coli. EMBO J. 15(18), 4798–4805 (1996)

    Google Scholar 

  5. Bourgine, P., Lesne, A.: Morphogenesis: Origins of Patterns and Shapes. Springer Complexity. Springer, Heidelberg (2010)

    Google Scholar 

  6. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13962-8_9

    Chapter  Google Scholar 

  7. Cavaliere, M., Mardare, R., Sedwards, S.: A multiset-based model of synchronizing agents: computability and robustness. Theoret. Comput. Sci. 391(3), 216–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoret. Comput. Sci. 330, 251–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science, Amsterdam (2011)

    Google Scholar 

  10. Manca, V., Pardini, G.: Morphogenesis through moving membranes. Nat. Comput. 13(3), 403–419 (2014)

    Article  MathSciNet  Google Scholar 

  11. Moore, T., Garzon, M., Deaton, R.: Probabilistic analysis of pattern formation in monotonic self-assembly. PLoS One 10(9), 1–23 (2015). doi:10.1371/journal.pone.0137982

    Google Scholar 

  12. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. Ann. Math. Studies 34, 43–98 (1956)

    MathSciNet  Google Scholar 

  13. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Informaticae 72(4), 467–483 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Păun, A., Popa, B.: P Systems with proteins on membranes and membrane division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006). doi:10.1007/11779148_27

    Chapter  Google Scholar 

  15. Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Gener. Comput. 20(3), 295–305 (2002)

    Article  MATH  Google Scholar 

  16. Păun, G.: Computing with membranes. J. Comput. System Sci. 61, 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  18. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  19. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata Lang. Comb. 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Robinson, K., Messerli, M.: Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. BioEssays 25, 759–766 (2003)

    Article  Google Scholar 

  21. Schrödinger, E.: What Is Life? The Physical Aspect of the Living Cell. Trinity College, Dublin (1944)

    MATH  Google Scholar 

  22. Tangirala, K., Caragea, D.: Generating features using burrows wheeler transformation for biological sequence classification. In: Pastor, O., et al. (ed.) Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, pp. 196–203. SciTePress (2014)

    Google Scholar 

  23. Tomita, M.: Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)

    Article  Google Scholar 

  24. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 7–72 (1950)

    Google Scholar 

  25. Watson, J., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  Google Scholar 

  26. Winfree, E.: Models of experimental self-assembly. Ph.D. thesis, Caltech (1998)

    Google Scholar 

  27. Maxwell-Boltzmann distribution, Wikipedia (cit 2017-1-29). https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

  28. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports Of the Czech Republic from the National Programme of Sustainability (NPU II) project IT4Innovations Excellence in Science - LQ1602, and by the Silesian University in Opava under the Student Funding Scheme, project SGS/13/2016. We are grateful to anonymous reviewers whose valuable comments helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Sosík .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 209 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sosík, P., Smolka, V., Drastík, J., Moore, T., Garzon, M. (2017). Morphogenetic and Homeostatic Self-assembled Systems. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics