Skip to main content

Towards Temporal Logic Computation Using DNA Strand Displacement Reactions

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

Abstract

Time-varying signals are ubiquitous throughout science, and studying the high-level temporal structure of such processes is of significant practical importance. In this context, techniques from computer science such as temporal logic are a powerful tool. Temporal logic allows one to describe temporal properties of time-varying processes, e.g., the order in which particular events occur. In this paper, we show that DNA strand displacement reaction networks can be used to implement computations that check certain temporal relationships within time-varying input signals. A key aspect of this work is the development of DNA circuits that incorporate a primitive memory, so that their behavior is influenced not just by the current observed chemical environment, but also by environments observed in the past. We formalize our circuit designs in the DSD programming language and use simulation results to confirm that they function as intended. This work opens up the possibility of developing DNA circuits capable of long-term monitoring of processes such as cellular function, and points to possible designs of future DNA circuits that can decide more sophisticated temporal logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the Supporting Information (available from the first author’s web page) for full DSD code listings for each system simulated in this paper, including full definitions of the modules.

  2. 2.

    See the Supporting Information (available from the first author’s web page) for full DSD code listings for each system simulated in this paper, including full definitions of the modules.

References

  1. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  2. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  3. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  5. Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing with DNA. ACS Synth. Biol. 2(5), 245–254 (2013)

    Article  Google Scholar 

  6. Farzadfard, F., Lu, T.K.: Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346(6211), 1256272 (2014)

    Article  Google Scholar 

  7. Fernando, C.T., Liekens, A.M.K., Bingle, L.E.H., Beck, C., Lenser, T., Stekel, D.J., Rowe, J.E.: Molecular circuits for associative learning in single-celled organisms. J. Royal Soc. Interface 6, 463–469 (2009)

    Article  Google Scholar 

  8. McGregor, S., Vases, V., Husbands, P., Fernando, C.: Evolution of associative learning in chemical networks. PLoS Comput. Biol. 8(11), e1002739 (2012)

    Article  MathSciNet  Google Scholar 

  9. Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Design of a biochemical circuit motif for learning linear functions. J. Royal Soc. Interface 11(101), 20140902 (2014)

    Article  Google Scholar 

  10. Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron. Artif. Life 19(2), 195–219 (2013)

    Article  Google Scholar 

  11. Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal perceptron through reinforcement in an artificial chemistry. J. Royal Soc. Interface 11, 20131100 (2014)

    Article  Google Scholar 

  12. Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5(8), 885–897 (2016)

    Article  MATH  Google Scholar 

  13. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. Royal Soc. Interface 9(68), 470–486 (2012)

    Article  Google Scholar 

  14. Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular computing approach. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 76–89. Springer, Cham (2013). doi:10.1007/978-3-319-01928-4_6

    Chapter  Google Scholar 

  15. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proc. Natl. Acad. Sci. USA 109(47), E3212–E3220 (2012)

    Article  Google Scholar 

  16. Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network. Parallel Process. Lett. 21(1), 1540002 (2015)

    Article  MathSciNet  Google Scholar 

  17. O’Steen, M.R., Cornett, E.M., Kolpashchikov, D.M.: Nuclease-containing media for resettable operation of DNA logic gates. Chem. Commun. 51, 1429–1431 (2015)

    Article  Google Scholar 

  18. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

  19. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23, 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  21. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)

    Article  Google Scholar 

  22. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  23. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. USA 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  24. Zhang, D.Y.: Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc. 133, 1077–1086 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grants 1525553, 1518861, and 1318833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Lakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lakin, M.R., Stefanovic, D. (2017). Towards Temporal Logic Computation Using DNA Strand Displacement Reactions. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics