Skip to main content

Machine Learning Models for Multidimensional Clinical Data

  • Chapter
  • First Online:
Handbook of Large-Scale Distributed Computing in Smart Healthcare

Part of the book series: Scalable Computing and Communications ((SCC))

Abstract

Healthcare monitoring systems in the hospital and at home generate large quantities of rich-phenotype data from a wide array of sources. Typical sources include clinical observations, continuous waveforms, lab results, medical images and text notes. The key clinical challenge is to interpret these in a way that helps to improve the standard of patient care. However, the size and complexity of the data sets, which are often multidimensional and dynamically changing, means that interpretation is extremely difficult, even for expert clinicians. One important set of approaches to this challenge is Machine Learning Systems. These are systems that analyse and interpret data in a way that automatically recognizes underlying patterns and trends. These patterns are useful for predicting future clinical events such as hospital re-admission, and for determining rules within clinical decision support tools. In this chapter we will provide a review of machine learning models currently used for event prediction and decision support in healthcare monitoring. In particular, we highlight how these approaches deal with multi-dimensional data. We then discuss some of the practical problems in implementing Machine Learning Systems. These include: missing or corrupted data, incorporation of heterogeneous and multimodal data, and generalization across patient populations and clinical settings. Finally, we discuss promising future research directions, including the most recent developments in Deep Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications. Health Affairs. 2014 Jul 1;33(7):1115–22.

    Google Scholar 

  2. Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Affairs. 2014 Jul 1;33(7):1163–70.

    Google Scholar 

  3. Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomedical engineering online. 2014 Jul 5;13(1):1.

    Google Scholar 

  4. Bishop CM. Pattern recognition and Machine Learning. Springer-New York 2006.

    Google Scholar 

  5. Sajda P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng. 2006 Aug 15;8:537–65.

    Google Scholar 

  6. Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and their Applications. 1998 Jul;13(4):18–28.

    Google Scholar 

  7. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proceedings of the IEEE. 2016 Feb;104(2):444–66.

    Google Scholar 

  8. Lucas PJ, van der Gaag LC, Abu-Hanna A. Bayesian networks in biomedicine and health-care. Artificial intelligence in medicine. 2004 Mar 1;30(3):201–14.

    Google Scholar 

  9. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. Journal of clinical epidemiology. 1996 Dec 31;49(12):1373–9.

    Google Scholar 

  10. Asgari S, Mehrnia A, Moussavi M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Computers in biology and medicine. 2015 May 1;60:132–42.

    Google Scholar 

  11. Oliver A, Freixenet J, Marti R, Pont J, Pérez E, Denton ER, Zwiggelaar R. A novel breast tissue density classification methodology. IEEE Transactions on Information Technology in Biomedicine. 2008 Jan;12(1):55–65.

    Google Scholar 

  12. Healthcare Commission. Report of the healthcare Commision’s visit to Maidstone and Tunbridge Wells NHS Trust on 12 and 13 December 2007. Retrieved 20-Jul-2016 url: http://webarchive.nationalarchives.gov.uk/20060502043818/http://healthcarecommission.org.uk/_db/_documents/Maidstone_and_Tunbridge_Wells_follow_up_visit_report_-_Dec_07.pdf.

  13. Boba M, Kołtun U, Bobek-Billewicz B, Chmielik E, Eksner B, Olejnik T. False-negative results of breast core needle biopsies–retrospective analysis of 988 biopsies. Polish Journal of Radiology. 2011 Jan;76(1):25.

    Google Scholar 

  14. Clarke GW, Chan AD, Adler A. Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry. In Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on 2014 Jun 11 (pp. 1–4). IEEE.

    Google Scholar 

  15. Hamilton PS, Curley MG, Aimi RM, Sae-Hau C. Comparison of methods for adaptive removal of motion artifact. In Computers in Cardiology 2000 2000 (pp. 383–386). IEEE.

    Google Scholar 

  16. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010 Aug 20;10(8):7772–88.

    Google Scholar 

  17. Celler BG, Sparks RS. Home Telemonitoring of Vital Signs—Technical Challenges and Future Directions. IEEE journal of biomedical and health informatics. 2015 Jan;19(1):82–91.

    Google Scholar 

  18. Hernandez-Silveira M, Ahmed K, Ang SS, Zandari F, Mehta T, Weir R, Burdett A, Toumazou C, Brett SJ. Assessment of the feasibility of an ultra-low power, wireless digital patch for the continuous ambulatory monitoring of vital signs. BMJ open. 2015 May 1;5(5):e006606.

    Google Scholar 

  19. Steinhubl SR, Feye D, Levine AC, Conkright C, Wegerich SW, Conkright G. Validation of a portable, deployable system for continuous vital sign monitoring using a multiparametric wearable sensor and personalised analytics in an Ebola treatment centre. BMJ Global Health. 2016 Jul 1;1(1):e000070.

    Google Scholar 

  20. SO80601-2-61:2011: Medical electronical equipment — Particular requirements for basic safety and essential performance of pulse oximeter equipment. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  21. Milner QJ, Mathews GR. An assessment of the accuracy of pulse oximeters. Anaesthesia. 2012 Apr 1;67(4):396–401.

    Google Scholar 

  22. Modell JG, Katholi CR, Kumaramangalam SM, Hudson EC, Graham D. Unreliability of the infrared tympanic thermometer in clinical practice: a comparative study with oral mercury and oral electronic thermometers. Southern medical journal. 1998 Jul;91(7):649–54.

    Google Scholar 

  23. Beevers G, Lip GY, O’Brien E. Blood pressure measurement: Part II–conventional sphygmomanometry: Technique of auscultatory blood pressure measurement. British Medical Journal. 2001 Apr 28;322(7293):1043.

    Google Scholar 

  24. Baker PD, Westenskow DR, Kück K. Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure. Medical and biological engineering and computing. 1997 May 1;35(3):271–8.

    Google Scholar 

  25. Pavlik VN, Hyman DJ, Toronjo C. Comparison of Automated and Mercury Column Blood Pressure Measurements in Health Care Settings. Journal of clinical hypertension (Greenwich, Conn.). 2000 Mar;2(2):81–6.

    Google Scholar 

  26. Wong WC, Shiu IK, Hwong TM, Dickinson JA. Reliability of automated blood pressure devices used by hypertensive patients. Journal of the Royal Society of Medicine. 2005 Mar 1;98(3):111–3.

    Google Scholar 

  27. Akpolat T, Dilek M, Aydogdu T, Adibelli Z, Erdem DG, Erdem E. Home sphygmomanometers: validation versus accuracy. Blood pressure monitoring. 2009 Feb 1;14(1):26–31.

    Google Scholar 

  28. Thimbleby H. Improving safety in medical devices and systems. In Healthcare Informatics (ICHI), 2013 IEEE International Conference on 2013 Sep 9 (pp. 1–13). IEEE.

    Google Scholar 

  29. Thimbleby H. Ignorance of interaction programming is killing people. interactions. 2008 Sep 1;15(5):52–7.

    Google Scholar 

  30. Wilson SJ, Wong D, Clifton D, Fleming S, Way R, Pullinger R, Tarassenko L. Track and trigger in an emergency department: an observational evaluation study. Emergency Medicine Journal. 2012 Mar 22:emermed-2011.

    Google Scholar 

  31. Prytherch DR, Smith GB, Schmidt P, Featherstone PI, Stewart K, Knight D, Higgins B. Calculating early warning scores—a classroom comparison of pen and paper and hand-held computer methods. Resuscitation. 2006 Aug 31;70(2):173–8.

    Google Scholar 

  32. Callen J, McIntosh J, Li J. Accuracy of medication documentation in hospital discharge summaries: A retrospective analysis of medication transcription errors in manual and electronic discharge summaries. International journal of medical informatics. 2010 Jan 31;79(1):58–64.

    Google Scholar 

  33. Wallace DR, Kuhn DR. Failure modes in medical device software: an analysis of 15 years of recall data. International Journal of Reliability, Quality and Safety Engineering. 2001 Dec;8(04):351–71.

    Google Scholar 

  34. Obradovich JH, Woods DD. Special section: Users as designers: How people cope with poor HCI design in computer-based medical devices. Human Factors: The Journal of the Human Factors and Ergonomics Society. 1996 Dec 1;38(4):574–92.

    Google Scholar 

  35. Batchelor JC, Casson AJ. Inkjet printed ECG electrodes for long term biosignal monitoring in personalized and ubiquitous healthcare. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015 Aug 25 (pp. 4013–4016). IEEE.

    Google Scholar 

  36. Tarassenko L, Villarroel M, Guazzi A, Jorge J, Clifton DA, Pugh C. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiological measurement. 2014 Mar 28;35(5):807.

    Google Scholar 

  37. Takano C, Ohta Y. Heart rate measurement based on a time-lapse image. Medical engineering & physics. 2007 Oct 31;29(8):853–7.

    Google Scholar 

  38. Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient light. Optics express. 2008 Dec 22;16(26):21434–45.

    Google Scholar 

  39. Pullinger R, Wilson S, Way R, Santos M, Wong D, Clifton D, Birks J, Tarassenko L. Implementing an electronic observation and early warning score chart in the emergency department: a feasibility study. European journal of emergency medicine: official journal of the European Society for Emergency Medicine. 2016 Feb 17.

    Google Scholar 

  40. Wong D, Bonnici T, Knight J, Morgan L, Coombes P, Watkinson P. SEND: a system for electronic notification and documentation of vital sign observations. BMC medical informatics and decision making. 2015 Aug 13;15(1):1.

    Google Scholar 

  41. Smith GB, Prytherch DR, Schmidt P, Featherstone PI, Knight D, Clements G, Mohammed MA. Hospital-wide physiological surveillance–a new approach to the early identification and management of the sick patient. Resuscitation. 2006 Oct 31;71(1):19–28.

    Google Scholar 

  42. Meccariello M, Perkins P, Quigley LG, Rock A, Qiu J. Vital Time Savings: Evaluating the Use of an Automated Vital Signs Documentation System on a Medical/Surgical Unit. J Healthc Inf Manag 2010 24(4):46–51.

    Google Scholar 

  43. Mekhjian HS, Kumar RR, Kuehn L, Bentley TD, Teater P, Thomas A, Payne B, Ahmad A. Immediate benefits realized following implementation of physician order entry at an academic medical center. Journal of the American Medical Informatics Association. 2002 Sep 1;9(5):529–39.

    Google Scholar 

  44. Murphy MF, Fraser E, Miles D, Noel S, Staves J, Cripps B, Kay J. How do we monitor hospital transfusion practice using an end to end electronic transfusion management system?. Transfusion. 2012 Dec 1;52(12):2502–12.

    Google Scholar 

  45. Davies A, Staves J, Kay J, Casbard A, Murphy MF. End‐to‐end electronic control of the hospital transfusion process to increase the safety of blood transfusion: strengths and weaknesses. Transfusion. 2006 Mar 1;46(3):352–64.

    Google Scholar 

  46. Staves J, Davies A, Kay J, Pearson O, Johnson T, Murphy MF. Electronic remote blood issue: a combination of remote blood issue with a system for end‐to‐end electronic control of transfusion to provide a “total solution” for a safe and timely hospital blood transfusion service. Transfusion. 2008 Mar 1;48(3):415–24.

    Google Scholar 

  47. Resetar E, Reichley RM, Noirot LA, Dunagan WC, Bailey TC. Customizing a commercial rule base for detecting drug-drug interactions. In AMIA 2005.

    Google Scholar 

  48. Bonnici T, Orphanidou C, Vallance D, Darrell A, Tarassenko L. Testing of wearable monitors in a real-world hospital environment: What lessons can be learnt?. In 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks 2012 May 9 (pp. 79–84). IEEE.

    Google Scholar 

  49. Wahlster P, Goetghebeur M, Kriza C, Niederländer C, Kolominsky-Rabas P. Balancing costs and benefits at different stages of medical innovation: a systematic review of Multi-criteria decision analysis (MCDA). BMC health services research. 2015 Jul 9;15(1):1.

    Google Scholar 

  50. Yeung MS, Lapinsky SE, Granton JT, Doran DM, Cafazzo JA. Examining nursing vital signs documentation workflow: barriers and opportunities in general internal medicine units. Journal of clinical nursing. 2012 Apr 1;21(7–8):975–82.

    Google Scholar 

  51. Tat TH, Xiang C, Thiam LE. Physionet challenge 2011: improving the quality of electrocardiography data collected using real time QRS-complex and T-wave detection. In2011 Computing in Cardiology 2011 Sep 18 (pp. 441–444). IEEE.

    Google Scholar 

  52. Johnson AE, Behar J, Andreotti F, Clifford GD, Oster J. Multimodal heart beat detection using signal quality indices. Physiological measurement. 2015 Jul 28;36(8):1665.

    Google Scholar 

  53. Clifton DA, Wong D, Clifton L, Wilson S, Way R, Pullinger R, Tarassenko L. A large-scale clinical validation of an integrated monitoring system in the emergency department. IEEE journal of biomedical and health informatics. 2013 Jul;17(4):835–42.

    Google Scholar 

  54. Orphanidou C., Bonnici T., Charlton P. Vallance D., Darrell A. and Tarassenko L., Signal Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications in Wireless Monitoring, in IEEE Journal of Biomedical and Health Informatics, 19(3), pp. 832–838, 2015.

    Google Scholar 

  55. Daluwatte C, Johannesen L, Galeotti L, Vicente J, Strauss DG, Scully CG. Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs. Physiological Measurement. 2016 Jul 25;37(8):1370.

    Google Scholar 

  56. Clifford GD, Behar J, Li Q, Rezek I. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiological measurement. 2012 Aug 17;33(9):1419.

    Google Scholar 

  57. Nizami S, Green JR, McGregor C. Implementation of artifact detection in critical care: A methodological review. IEEE reviews in biomedical engineering. 2013;6:127–42.

    Google Scholar 

  58. Kaur M, Singh B. Comparison of different approaches for removal of baseline wander from ecg signal. In Proceedings of the International Conference & Workshop on Emerging Trends in Technology 2011 Feb 25 (pp. 1290–1294). ACM.

    Google Scholar 

  59. ECG baseline wander. Reproduced with permission from http://joachimbehar.comuv.com/ECG_tuto_1.php.

  60. Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One. 2008 Aug 20;3(8):e3004.

    Google Scholar 

  61. Li Y, Ma Z, Lu W, Li Y. Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiological measurement. 2006 Mar 14;27(4):425.

    Google Scholar 

  62. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. The Lancet. 1974 Jul 13;304(7872):81–4.

    Google Scholar 

  63. Paul DB, Rao GU. Correlation of Bispectral Index with Glasgow Coma Score in mild and moderate head injuries. Journal of clinical monitoring and computing. 2006 Dec 1;20(6):399–404.

    Google Scholar 

  64. Beridze M, Khaburzania M, Shakarishvili R, Kazaishvili D. Dominated EEG patterns and their prognostic value in coma caused by traumatic brain injury. Georgian Med News. 2010 Sep;186:28–33.

    Google Scholar 

  65. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of neuroscience methods. 2012 Jul 15;208(2):181–9.

    Google Scholar 

  66. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. Bmj. 2007 Jul 19;335(7611):136.

    Google Scholar 

  67. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, Brindle P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. Bmj. 2008 Jun 26;336(7659):1475–82.

    Google Scholar 

  68. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Bmj. 2009 Jun 29;338:b2393.

    Google Scholar 

  69. Collins GS, Altman DG. An independent and external validation of QRISK2 cardiovascular disease risk score: a prospective open cohort study. Bmj. 2010 May 13;340:c2442.

    Google Scholar 

  70. Allison PD. Missing data: Quantitative applications in the social sciences. British Journal of Mathematical and Statistical Psychology. 2002;55(1):193–6.

    Google Scholar 

  71. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deterioration. British journal of anaesthesia. 2006 Jul 1;97(1):64–8.

    Google Scholar 

  72. Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics. 1992 Jan 1:337–48.

    Google Scholar 

  73. Kirkwood BR. Essentials of medical statistics. Blackwell Scientific Publications; 1988.

    Google Scholar 

  74. Tobin J. Estimation of relationships for limited dependent variables. Econometrica: journal of the Econometric Society. 1958 Jan 1:24–36.

    Google Scholar 

  75. Rubin DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; 2004 Jun 9.

    Google Scholar 

  76. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science. 2007 Sep 1;8(3):206–13.

    Google Scholar 

  77. Bodner TE. What improves with increased missing data imputations?. Structural Equation Modeling. 2008 Oct 22;15(4):651–75.

    Google Scholar 

  78. Schafer JL. Multiple imputation: a primer. Statistical methods in medical research. 1999 Feb 1;8(1):3–15.

    Google Scholar 

  79. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work?. International journal of methods in psychiatric research. 2011 Mar 1;20(1):40–9.

    Google Scholar 

  80. Allison PD. Handling missing data by maximum likelihood. In SAS global forum 2012 Apr 22 (Vol. 23).

    Google Scholar 

  81. Stegle O, Fallert SV, MacKay DJ, Brage S. Gaussian process robust regression for noisy heart rate data. IEEE Transactions on Biomedical Engineering. 2008 Sep;55(9):2143–51.

    Google Scholar 

  82. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes for time-series modelling. Phil. Trans. R. Soc. A. 2013 Feb 13;371(1984):20110550.

    Google Scholar 

  83. Dürichen R, Pimentel MA, Clifton L, Schweikard A, Clifton DA. Multitask Gaussian processes for multivariate physiological time-series analysis. IEEE Transactions on Biomedical Engineering. 2015 Jan;62(1):314–22.

    Google Scholar 

  84. Boyle, P. and Frean, M., 2004. Dependent gaussian processes. In Advances in neural information processing systems (pp. 217–224).

    Google Scholar 

  85. Wong D, Clifton DA, Tarassenko L. Probabilistic detection of vital sign abnormality with Gaussian process regression. In Bioinformatics & Bioengineering (BIBE), 2012 IEEE 12th International Conference on 2012 Nov 11 (pp. 187–192). IEEE.

    Google Scholar 

  86. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. bioinformatics. 2007 Oct 1;23(19):2507–17.

    Google Scholar 

  87. Breiman L. Random forests. Machine learning. 2001 Oct 1;45(1):5–32.

    Google Scholar 

  88. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC press; 1984.

    Google Scholar 

  89. Edmonds J. Matroids and the greedy algorithm. Mathematical programming. 1971 Dec 1;1(1):127–36.

    Google Scholar 

  90. Joliffe IT, Morgan BJ. Principal component analysis and exploratory factor analysis. Statistical methods in medical research. 1992 Mar 1;1(1):69–95.

    Google Scholar 

  91. Sammon JW. A nonlinear mapping for data structure analysis. IEEE Transactions on computers. 1969 May 1;18(5):401–9.

    Google Scholar 

  92. Wong D, Strachan I, Tarassenko L. Visualisation of high-dimensional data for very large data sets. In Workshop Mach. Learn. Healthcare Appl., Helsinki, Finland 2008.

    Google Scholar 

  93. Lowe D, Tipping ME. Neuroscale: novel topographic feature extraction using RBF networks. Advances in Neural Information Processing Systems. 1997:543–9.

    Google Scholar 

  94. Durrant-Whyte H, Henderson TC. Multisensor data fusion. In Springer Handbook of Robotics 2008 (pp. 585–610). Springer Berlin Heidelberg.

    Google Scholar 

  95. Li Q. and Clifford G. D., Signal quality and data fusion for false alarm reduction in the intensive care unit, Journal of Electrocardiology, 45(6):596–603, Nov 2012.

    Google Scholar 

  96. Williams C, Quinn J, McIntosh N. Factorial switching Kalman filters for condition monitoring in neonatal intensive care.

    Google Scholar 

  97. Clifton DA, Bannister PR, Tarassenko L. A framework for novelty detection in jet engine vibration data. In Key engineering materials 2007 (Vol. 347, pp. 305–310). Trans Tech Publications.

    Google Scholar 

  98. Ma M, Gonet R, Yu R, Anagnostopoulos GC. Metric representations of data via the Kernel-based Sammon Mapping. In The 2010 International Joint Conference on Neural Networks (IJCNN) 2010 Jul 18 (pp. 1–7). IEEE.

    Google Scholar 

  99. Hu M, Chen Y, Kwok JT. Building sparse multiple-kernel SVM classifiers. IEEE Transactions on Neural Networks. 2009 May;20(5):827–39.

    Google Scholar 

  100. Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G, Reiman E. Heterogeneous data fusion for alzheimer’s disease study. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining 2008 Aug 24 (pp. 1025–1033). ACM.

    Google Scholar 

  101. Blumenthal D. Launching hitech. New England Journal of Medicine. 2010 Feb 4;362(5):382–5.

    Google Scholar 

  102. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science. 2013 Jan 18;339(6117):321–4.

    Google Scholar 

  103. Lenzerini M. Data integration: A theoretical perspective. InProceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems 2002 Jun 3 (pp. 233–246). ACM.

    Google Scholar 

  104. Donnelly K. SNOMED-CT: The advanced terminology and coding system for eHealth. Studies in health technology and informatics. 2006 Jan;121:279.

    Google Scholar 

  105. O’Neil M, Payne C, Read J. Read Codes Version 3: a user led terminology. Methods of information in medicine. 1995 Mar;34(1–2):187–92.

    Google Scholar 

  106. Lopez AD. Sharing data for public health: where is the vision?. Bulletin of the World Health Organization. 2010 Jun;88(6):467.

    Google Scholar 

  107. van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Heymann D, Burke DS. A systematic review of barriers to data sharing in public health. BMC Public Health. 2014 Nov 5;14(1):1.

    Google Scholar 

  108. Luo, Jake et al. “Big Data Application in Biomedical Research and Health Care: A Literature Review.” Biomedical Informatics Insights 8 (2016): 1–10. PMC. Web. 8 Nov. 2016.

    Google Scholar 

  109. White T. Hadoop: The Definite Guide. Sebastopol, CA:O’Reilly Media, Inc.;2012.

    Google Scholar 

  110. Jin Y, Deyu T, Yi Z. A distributed storage model for EHR based on HBase. In: 2011 International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), Shenzhen, China; IEEE. 2011:369–72.

    Google Scholar 

  111. Dutta H, Kamil A, Pooleery M, et al. Distributed storage of large-scale multidimensional electroencephalogram data using Hadoop and HBase. In: Fiore S, Aloisio G, eds. Grid and Cloud Database Management. Berlin: Springer; 2011:331–47.

    Google Scholar 

  112. Sahoo SS, Jayapandian C, Garg G, et al. Heart beats in the cloud: distributed analysis of electrophysiological ‘Big Data’ using cloud computing for epilepsy clinical research. J Am Med Inform Assoc. 2014;21(2):263–71.

    Google Scholar 

  113. Jayapandian CP, Chen C-H, Bozorgi A, et al. Cloudwave: distributed processing of “Big Data” from electrophysiological recordings for epilepsy clinical research using Hadoop. In: AMIA Annual Symposium Proceedings, Washington, DC; AMIA. 2013:691.

    Google Scholar 

  114. Lin W, Dou W, Zhou Z, et al. A cloud-based framework for home-diagnosis service over big medical data. J Syst Software. 2015;102:192–206.

    Google Scholar 

  115. Kimura E., Hamada K., Kikuchi R., Chida K., Okamoto K., Manabe S., Kuroda T., Matsumura Y., Takeda T. and Mihara N., Evaluation of Secure Computation in a Distributed Healthcare Setting, in A. Hoerbst et al. (Eds.), Volume 228: Exploring Complexity in Health: An Interdisciplinary Systems Approach, Studies in Health Technology and Informatics, pp. 152–156, 2016.

    Google Scholar 

  116. Ng K, Ghoting A, Steinhubl SR, et al. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. J Biomed Inform. 2014;48:160–70.

    Google Scholar 

  117. Goldhill DR, White SA, Sumner A. Physiological values and procedures in the 24 h before ICU admission from the ward. Anaesthesia. 1999 Jun 1;54(6):529–34.

    Google Scholar 

  118. Wilson SJ, Wong D, Pullinger RM, Way R, Clifton DA, Tarassenko L. Analysis of a data-fusion system for continuous vital sign monitoring in an emergency department. European Journal of Emergency Medicine. 2016 Feb 1;23(1):28–32.

    Google Scholar 

  119. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In International Conference on Medical Image Computing and Computer-assisted Intervention 2013 Sep 22 (pp. 411–418). Springer Berlin Heidelberg.

    Google Scholar 

  120. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Medical Image Analysis. 2016 May 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Orphanidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Orphanidou, C., Wong, D. (2017). Machine Learning Models for Multidimensional Clinical Data. In: Khan, S., Zomaya, A., Abbas, A. (eds) Handbook of Large-Scale Distributed Computing in Smart Healthcare. Scalable Computing and Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-58280-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58280-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58279-5

  • Online ISBN: 978-3-319-58280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics