Skip to main content

Creep and Relaxation of Springs

  • Chapter
  • First Online:
Durability of Springs
  • 957 Accesses

Abstract

In this chapter the time-depending behavior of spring elements under steady load is studied. The common creep laws are implemented for the description of material. For basic spring elements the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash constitutive models were studied. Analytical models are developed for the relaxation of stresses and creep under constant load. Closed-form solutions of the analytical models of creep and relaxation are found. The explanation of the experimental procedure for the experimental acquisition of creep models is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For material thickness the symbol T is used. The symbol t is reserved for time variable.

References

  • Abu-Haiba, M.S., Fatemi, A., Zoroufi, M.: Creep deformation and monotonic stress-strain behavior of Haynes alloy 556 at elevated temperatures. J. Mater. Sci. 37, 2899–2907 (2002)

    Article  Google Scholar 

  • Almen, J.O., Laszlo, A.: The uniform section disks spring. Trans. ASME. 58(4), 305–314 (1936)

    Google Scholar 

  • Ashby, M.F.: Material selection in mechanical design. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Betten, J.: Creep mechanics, 3d edn. Springer, Berlin (2008)

    Google Scholar 

  • Boardman, F.D.: Derivation of creep constants from measurements of relaxation creep in springs. Philos. Mag. 11(109), 185–187 (1965). doi:10.1080/14786436508211935

    Article  Google Scholar 

  • Boyle, J.T.: The creep behavior of simple structures with a stress range-dependent constitutive model. Arch. Appl. Mech. 82, 495–514 (2012)

    Article  MATH  Google Scholar 

  • Boyle, J.T., Spence, J.: Stress analysis for creep. Butterworth, London (1983)

    Google Scholar 

  • Chang, D.J.: Prediction of Stress Relaxation for Compression and Torsion Springs, TR-96(8565)-l, The Aerospace Corporation Technology Operations, El Segundo, CA 90245-4691, (1995)

    Google Scholar 

  • DIN EN 16984:2017-02: Disc springs – Calculation; German version EN 16984:2016 (2017)

    Google Scholar 

  • Garofalo, F.: An empirical relation defining the stress dependence of minimum creep rate in metals. Trans. Metall. Soc. AIME. 227, 351–356 (1963)

    Google Scholar 

  • Geinitz, V., Weiß, M., Kletzin, U., Beyer, P.: Relaxation of helical springs and spring steel wires, 56th International Scientific Colloquium, Ilmenau University of Technology (2011)

    Google Scholar 

  • Gittus, J.H.: Implications of some data on relaxation creep in nimonic 80a. Philos. Mag. 9(101), 749–753 (1964). doi:10.1080/14786436408211888

    Article  Google Scholar 

  • Gittus, J.: The mechanical equation of states: Dislocation creep due to stresses varying in magnitude and direction. Philos. Mag. 24(192), 1423–1440 (1971). doi:10.1080/14786437108217422

    Article  Google Scholar 

  • Gooch, D.J.: Techniques for Multiaxial Creep Testing. Springer Science & Business Media, 364 p (1986).

    Google Scholar 

  • Hübner, W., Emmerling, F.A.: Axialsymmetrische große Deformationen einer elastischen Kegelschale. ZAMM – J. Appl. Math. Mech. 62(8), 404–406 (1982)

    Article  Google Scholar 

  • Kassner, M.: Fundamentals of creep in metals and alloys, 2nd edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  • Kobelev, V.: Relaxation and creep in twist and flexure. Multidiscip. Model. Mater. Struct. 10(3), 304–327 (2014). doi:10.1108/MMMS-11-2013-0067

    Article  Google Scholar 

  • Naumenko, K., Altenbach, H.: Modelling of creep for structural analysis. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  • Naumenko, K., Altenbach, H., Gorash, Y.: Creep analysis with a stress range dependent constitutive model. Arch. Appl. Mech. 79, 619–630 (2009)

    Article  MATH  Google Scholar 

  • Odquist, F.K.G., Hult, J.: Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin/Göttingen/Heidelberg (1962)

    Book  Google Scholar 

  • Timoshenko, S.: Strength of materials. Van Nostrand, Toronto, New York, London (1948)

    MATH  Google Scholar 

  • Yao, H.-T., Xuan, F.-Z., Wang, Z., Tu, S.-T.: A review of creep analysis and design under multi-axial stress states. Nucl. Eng. Des. 237, 1969–1986 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kobelev, V. (2018). Creep and Relaxation of Springs. In: Durability of Springs. Springer, Cham. https://doi.org/10.1007/978-3-319-58478-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58478-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58477-5

  • Online ISBN: 978-3-319-58478-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics