Skip to main content

Subspace Least Squares Multidimensional Scaling

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Abstract

Multidimensional Scaling (MDS) is one of the most popular methods for dimensionality reduction and visualization of high dimensional data. Apart from these tasks, it also found applications in the field of geometry processing for the analysis and reconstruction of non-rigid shapes. In this regard, MDS can be thought of as a shape from metric algorithm, consisting of finding a configuration of points in the Euclidean space that realize, as isometrically as possible, some given distance structure. In the present work we cast the least squares variant of MDS (LS-MDS) in the spectral domain. This uncovers a multiresolution property of distance scaling which speeds up the optimization by a significant amount, while producing comparable, and sometimes even better, embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note also that (1) is not differentiable everywhere.

References

  1. Toolbox for surface comparison and analysis. http://tosca.cs.technion.ac.il/book/resources_data.html

  2. Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Nat. Acad. Sci. 110(45), 18052–18057 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, pp. 177–184 (2004)

    Google Scholar 

  5. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, Heidelberg (2005)

    MATH  Google Scholar 

  6. Boscaini, D., Eynard, D., Bronstein, M.M.: Shape-from-intrinsic operator. arXiv preprint arXiv:1406.1925 (2014)

  7. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70904-6_6

    Chapter  Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer Science & Business Media, Heidelberg (2008)

    MATH  Google Scholar 

  9. Bronstein, M.M., Bronstein, A.M., Kimmel, R., Yavneh, I.: Multigrid multidimensional scaling. Numer. Linear Algebra Appl. 13(2–3), 149–171 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–472 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  12. De Leeuw, J., Barra, I.J., Brodeau, F., Romier, G., Van Cutsem, B., et al.: Applications of convex analysis to multidimensional scaling. In: Recent Developments in Statistics. Citeseer (1977)

    Google Scholar 

  13. De Leeuw, J., Heiser, W.J.: Multidimensional scaling with restrictions on the configuration. Multivar. Anal. 5, 501–522 (1980)

    MathSciNet  MATH  Google Scholar 

  14. De Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems, pp. 721–728 (2003)

    Google Scholar 

  15. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  16. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)

    Article  Google Scholar 

  17. Guttman, L.: A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33(4), 469–506 (1968)

    Article  MATH  Google Scholar 

  18. Kalofolias, V., Bresson, X., Bronstein, M., Vandergheynst, P.: Matrix completion on graphs. arXiv preprint arXiv:1408.1717 (2014)

  19. Kovalsky, S.Z., Galun, M., Lipman, Y.: Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph. (TOG) 35(4), 134 (2016)

    Article  Google Scholar 

  20. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawrence, J., Arietta, S., Kazhdan, M., Lepage, D., O’Hagan, C.: A user-assisted approach to visualizing multidimensional images. IEEE Trans. Vis. Comput. Graph. 17(10), 1487–1498 (2011)

    Article  Google Scholar 

  23. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)

    Article  Google Scholar 

  24. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Puy, G., Tremblay, N., Gribonval, R., Vandergheynst, P.: Random sampling of bandlimited signals on graphs. Appl. Comput. Harmonic Anal. (2016, in press). http://doi.org/10.1016/j.acha.2016.05.005

  26. Rosman, G., Bronstein, A.M., Bronstein, M.M., Sidi, A., Kimmel, R.: Fast multidimensional scaling using vector extrapolation. Technical report CIS-2008-01. Technnion, Israel Institute of Technology (2008)

    Google Scholar 

  27. Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction. In: Semisupervised Learning, pp. 293–308. MIT Press, Cambridge (2006)

    Google Scholar 

  28. Shahid, N., Kalofolias, V., Bresson, X., Bronstein, M., Vandergheynst, P.: Robust principal component analysis on graphs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2812–2820 (2015)

    Google Scholar 

  29. Shamai, G., Aflalo, Y., Zibulevsky, M., Kimmel, R.: Classical scaling revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2255–2263 (2015)

    Google Scholar 

  30. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27(2), 125–140 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  31. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17(4), 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuan, Y.: A review on subspace methods for nonlinear optimization. In: Proceedings of the International Congress of Mathematics, pp. 807–827 (2014)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the ERC StG grant no. 335491 and the ERC StG grant no. 307048 (COMET). Part of this research was carried out during a stay with Intel Perceptual Computing Group, Haifa, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Boyarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boyarski, A., Bronstein, A.M., Bronstein, M.M. (2017). Subspace Least Squares Multidimensional Scaling. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics