Skip to main content

Learning About Forces Using Multiple Representations

  • Chapter
  • First Online:
Multiple Representations in Physics Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 10))

Abstract

We present two research-based interventions to measure upper secondary student learning of forces using multiple representations (MRs). The first intervention is the Representational Variant of the Force Concept Inventory (R-FCI) – a multiple-choice test for evaluating students’ representational consistency in answering triplets of isomorphic items in the context of forces. The second intervention is an interaction diagram (ID) – a visual representation that helps students to identify forces resulting from interactions between two objects. Students’ representational consistency on the R-FCI pre-test correlated with their normalised learning gain on the Force Concept Inventory (FCI) suggesting that students representational skills before the intervention were related to their conceptions of forces. The interaction diagram (ID) for indentifying relevant interactions and constructing a corresponding free-body diagram (FBD) involved different instruction groups –– called heavy ID, light ID and no ID – depending on the extent that IDs were utilised in teaching. The heavy ID groups outperformed the light ID and the no ID groups in identifying forces and constructing the correct FBDs. In addition, the heavy ID groups learned Newton’s third law better than the other ID groups. Our studies provide further evidence of the benefits of MRs in learning the concept of force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

    Article  Google Scholar 

  • Bao, L., Hogg, K., & Zollman, D. (2002). Model analysis of fine structures of student models: An example with Newton’s third law. American Journal of Physics, 70(7), 766–778.

    Article  Google Scholar 

  • Brookes, D. T., & Etkina, E. (2009). “Force,” ontology, and language. Physical Review Special Topics – Physics Education Research, 5(1), 010110.

    Article  Google Scholar 

  • Brown, D. E. (1989). Students’ concept of force: The importance of understanding Newton’s third law. Physics Education, 24(6), 353–358.

    Article  Google Scholar 

  • Coletta, V. P., & Phillips, J. A. (2005). Interpreting FCI scores: Normalized gain, preinstruction scores, and scientific reasoning ability. American Journal of Physics, 73(12), 1172–1182.

    Article  Google Scholar 

  • Dancy, M., & Beichner, R. (2006). Impact of animation on assessment of conceptual understanding in physics. Physical Review Special Topics - Physics Education Research, 2, 010104.

    Article  Google Scholar 

  • diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293.

    Article  Google Scholar 

  • Dufresne, R., Gerace, W., & Leonard, W. (1997). Solving physics problems with multiple representations. The Physics Teacher, 35(5), 270–275.

    Article  Google Scholar 

  • Duit, R. (2009). Bibliography – STCSE Students’ and teachers’ conceptions and science education. Retrieved from http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html

  • Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74.

    Article  Google Scholar 

  • Halloun, I., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056–1065.

    Article  Google Scholar 

  • Halloun, I., Hake, R. R., Mosca, E. P., & Hestenes, D. (1995). Force concept inventory, revised 1995. Available from http://modeling.asu.edu/R&E/Research.html

  • Hatakka, J., Saari, H., Sirviö, J., Viiri, J., & Yrjänäinen, S. (2004). Physica 1. Porvoo: Werner Söderström Oy.

    Google Scholar 

  • Heller, J. I., & Reif, F. (1984). Prescribing effective human problem-solving processes: Problem solving in physics cognition and instruction. Cognition and Instruction, 1(2), 177–216.

    Article  Google Scholar 

  • Hellingman, C. (1989). Do forces have twin brothers? Physics Education, 24(1), 36–40.

    Article  Google Scholar 

  • Hellingman, C. (1992). Newton’s third law revisited. Physics Education, 27(2), 112–115.

    Article  Google Scholar 

  • Hestenes, D. (1997). Modeling method for physics teachers. In E. Redish & J. Rigden (Eds.), The changing role of physics departments in modern universities: Proceedings of the International Conference on Undergraduate Physics Education (Vol. 399, pp. 935–958). Melville: American Institute of Physics.

    Google Scholar 

  • Hestenes, D., & Wells, M. (1992). A mechanics baseline test. The Physics Teacher, 30, 159–165.

    Article  Google Scholar 

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141. Revised tables I and II are available from http://modeling.asu.edu/R&E/Research.html

  • Hinrichs, B. (2005). Using the system schema representational tool to promote student understanding of Newton’s third law. In J. Marx, P. Heron, & S. Franklin (Eds.), 2004 Physics Education Research Conference (Vol. 790, pp. 117–120). New York: American Institute of Physics.

    Google Scholar 

  • Jauhiainen, J., Koponen, I., & Lavonen, J. (2001). The force concept inventory in diagnosing the conceptual understanding of Newtonian mechanics in Finnish upper secondary schools. In M. Ahtee, O. Björkvist, E. Pehkonen, & V. Vatanen (Eds.), Research on mathematics and science education – From beliefs to cognition, from problem solving to understanding (pp. 101–114). Jyväskylä: Institute for Educational Research, University of Jyväskylä.

    Google Scholar 

  • Jiménez, J. D., & Perales, F. J. (2001). Graphic representation of force in secondary education: Analysis and alternative educational proposals. Physics Education, 36(3), 227–235.

    Article  Google Scholar 

  • Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-assessment when solving physics problems. Physical Review Special Topics – Physics Education Research, 1(1), 010104.

    Article  Google Scholar 

  • Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics – Physics Education Research, 3(1), 010108.

    Article  Google Scholar 

  • Meltzer, D. E. (2005). Relation between students’ problem-solving performance and representational format. American Journal of Physics, 73(5), 463–478.

    Article  Google Scholar 

  • McCarthy, T. J., & Goldfinch, T. (2010). Teaching the concept of free body diagrams. In A. Gardner & L. Jolly (Eds.), The 21st annual conference for the Australasian association for engineering education (pp. 454–460). Wembley: Australasian Association for Engineering Education.

    Google Scholar 

  • Mäkynen, A. (2014). Vuorovaikutuskaavion käytön vaikutus voimakäsitteen oppimiseen lukion mekaniikan opetusjaksoilla (The effect of interaction diagram in learning the force concept in mechanics courses in Finnish upper secondary schools) (Doctoral Dissertation, in Finnish). University of Jyväskylä, Jyväskylä, Finland. Retrieved May 20, 2016, from https://jyx.jyu.fi/dspace/handle/123456789/43222 (English abstract is included).

  • Nieminen, P., Savinainen, A., & Viiri, J. (2010). Force Concept Inventory based multiple-choice test for investigating students’ representational consistency. Physical Review Special Topics – Physics Education Research, 6(2), 020109. Available from http://www.compadre.org/per/items/detail.cfm?ID=11958

  • Nieminen, P., Savinainen, A., & Viiri, J. (2012). Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning. Physical Review Special Topics – Physics Education Research, 8(1), 010123.

    Article  Google Scholar 

  • Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education – Why should we use them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple representations in physics education (pp. xx–xx). Cham: Springer.

    Google Scholar 

  • Reif, F. (1995). Millikan lecture 1994: Understanding and teaching important scientific thought processes. American Journal of Physics, 63(1), 17–32.

    Article  Google Scholar 

  • Rosengrant, D., Van Heuvelen, A., & Etkina, E. (2009). Do students use and understand free-body diagrams? Physical Review Special Topics – Physics Education Research, 5, 010108.

    Article  Google Scholar 

  • Savinainen, A., & Scott, P. (2002). The force concept inventory: A tool for monitoring student learning. Physics Education, 37(1), 45–52.

    Article  Google Scholar 

  • Savinainen, A., & Viiri, J. (2008). The force concept inventory as a measure of students’ conceptual coherence. International Journal of Science and Mathematics Education, 6, 719–740.

    Article  Google Scholar 

  • Savinainen, A., Scott, P., & Viiri, J. (2005). Using a bridging representation and social interactions to foster conceptual change: Designing and evaluating an instructional sequence for Newton’s third law. Science Education, 89(2), 175–195.

    Article  Google Scholar 

  • Savinainen, A., Mäkynen, A., Nieminen, P., & Viiri, J. (2013). Does using a visual-representation tool foster students’ ability to identify forces and construct free-body diagrams? Physical Review Special Topics - Physics Education Research, 9(1), 010104.

    Article  Google Scholar 

  • Savinainen, A., Mäkynen, A., Nieminen, P., & Viiri, J. (2017). The effect of using a visual representation tool in a teaching-learning sequence for teaching Newton’s third law. Research in Science Education, 47(1), 119–135.

    Google Scholar 

  • Scherr, R. E., & Redish, E. F. (2005). Newton’s zeroth law: Learning from listening to our students. The Physics Teacher, 43(1), 41–45.

    Article  Google Scholar 

  • Thornton, R. K. (1995). Conceptual dynamics: Changing student views of force and motion. In C. Bernardini, C. Tarsitani, & M. Vincentini (Eds.), Thinking physics for teaching (pp. 157–183). New York: Plenum.

    Chapter  Google Scholar 

  • Thornton, R. K., & Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics, 66(4), 338–352.

    Article  Google Scholar 

  • Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design-based research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275–2314.

    Article  Google Scholar 

  • Turner, L. (2003). System schemas. The Physics Teacher, 41(7), 404–408.

    Article  Google Scholar 

  • Van Heuvelen, A. (1991). Overview, case study physics. American Journal of Physics, 59(10), 898–907.

    Article  Google Scholar 

  • Van Heuvelen, A., & Zou, X. L. (2001). Multiple representations of work-energy processes. American Journal of Physics, 69(2), 184–194.

    Article  Google Scholar 

  • Whiteley, P. (1996). Using free body diagrams as a diagnostic instrument. Physics Education, 31(5), 309–313.

    Article  Google Scholar 

  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasi Nieminen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nieminen, P., Savinainen, A., Viiri, J. (2017). Learning About Forces Using Multiple Representations. In: Treagust, D., Duit, R., Fischer, H. (eds) Multiple Representations in Physics Education. Models and Modeling in Science Education, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58914-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58912-1

  • Online ISBN: 978-3-319-58914-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics