Skip to main content

A New Scalable and Performance-Enhancing Bootstrap Aggregating Scheme for Variables Selection

Taking Real-World Web Services Resources as a Case

  • Conference paper
  • First Online:
E-Technologies: Embracing the Internet of Things (MCETECH 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 289))

Included in the following conference series:

  • 920 Accesses

Abstract

Variables selection is a vital Data Mining technique which is used to select the cost-effective predictors by discarding variables with little or no predictive power.

In this paper, we introduce a new conceptual model for variables selection which includes subset generation, Ensemble learning, models selection and validation. Particularly, we addressed the problem of searching for and discarding irrelevant variables, scoring variables by relevance and selecting a subset of the cost-effective predictors. The generalization was seen to improve significantly in terms of recognition accuracy when the proposed system, which is named SPAS, is tested on QoS for Real-World Web Services. Good experimental studies demonstrate the effectiveness of our Wrapper model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wsdream.github.io/dataset/wsdream_dataset1.html.

  2. 2.

    http://math.nist.gov/javanumerics/jama/.

References

  1. Smith, M.S., Fahrmeir, L.: Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J. Am. Stat. Assoc. 102(478), 417–431 (2007). Taylor & Francis

    Article  MathSciNet  MATH  Google Scholar 

  2. Long, N., Gianola, D., Rosa, G.J.M., Weigel, K.A.: Dimension reduction and variable selection for genomic selection: application to predicting milk yield in Holsteins. J. Anim. Breed. Genet. 128(4), 247–257 (2011). Wiley Online Library

    Article  Google Scholar 

  3. Chagas, C.M., Koike, C.: Bayesian Approach to Action Selection and Attention Focusing: An Application in Autonomous Robot Programming. Institut National Polytechnique de Grenoble-INPG (2005)

    Google Scholar 

  4. Lloyd, G.R., Wongravee, K., Silwood, C.J.L., Grootveld, M., Brereton, R.G.: Self organising maps for variable selection: application to human saliva analysed by nuclear magnetic resonance spectroscopy to investigate the effect of an oral healthcare product. Chemometr. Intell. Lab. Syst. 98(2), 149–161 (2009). Elsevier

    Article  Google Scholar 

  5. Zhang, Y., Lee, W., Huang, Y.A.: Intrusion detection techniques for mobile wireless networks. Wireless Netw. 9(5), 545–556 (2003). Springer, New York

    Article  Google Scholar 

  6. Deepa, T., Punithavalli, M.: A GLFES and DFT technique for feature selection in high-dimensional imbalanced dataset. IJCSE 3(2), 336–343 (2012)

    Google Scholar 

  7. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). Elsevier

    Article  Google Scholar 

  8. Panthong, R., Srivihok, A.: Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm. Procedia Comput. Sci. 72, 162–169 (2015). Elsevier

    Article  Google Scholar 

  9. Lin, C.-J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007). MIT Press

    Article  MathSciNet  MATH  Google Scholar 

  10. Kabir, M.M., Islam, M.M., Murase, K.: A new Wrapper feature selection approach using neural network. Neurocomputing 73(16), 3273–3283 (2010). Elsevier

    Article  Google Scholar 

  11. Liu, Y., Zheng, Y.F.: FS_SFS: a novel feature selection method for support vector machines. Pattern Recogn. 39(7), 1333–1345 (2006). Elsevier

    Article  MATH  Google Scholar 

  12. Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39, 3747–3763 (2012). Elsevier

    Article  Google Scholar 

  13. Lu, C.-J., Tsai, D.-M.: Automatic defect inspection for LCDs using singular value decomposition. Int. J. Adv. Manuf. Technol. 25(1–2), 53–61 (2005). Springer

    Article  Google Scholar 

  14. Mladenić, D., Grobelnik, M.: Feature selection on hierarchy of web documents. Decis. Support Syst. 35(1), 45–87 (2003). Elsevier

    Article  Google Scholar 

  15. Amiri, F., Yousefi, M.R., Lucas, C., Shakery, A., Yazdani, N.: Mutual information-based feature selection for intrusion detection systems. J. Netw. Comput. Appl. 34(4), 1184–1199 (2011). Elsevier

    Article  Google Scholar 

  16. Azevedo, A.: Integration of Data Mining in Business Intelligence Systems. IGI Global, Hershey (2014)

    Google Scholar 

  17. Jovic, A., Brkić, K., Bogunovic, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205. IEEE (2015)

    Google Scholar 

  18. Jingu, K., Haesun, P.: Sparse nonnegative matrix factorization for clustering. Georgia Institute of Technology (2008)

    Google Scholar 

  19. Hoi, S.C.H., Wang, J., Zhao, P., Jin, R.: Online feature selection for mining big data. In: Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, pp. 93–100. ACM (2012)

    Google Scholar 

  20. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., et al.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7(2), 32–41 (2008). IEEE

    Article  Google Scholar 

  21. Xia, J., Nick, P., Young, N., Wishart, D.S.: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37(suppl 2), W652–W660 (2009). Oxford Univ. Press

    Article  Google Scholar 

  22. Kaur, P.D., Chana, I.: Cloud based intelligent system for delivering health care as a service. Comput. Methods Program. Biomed. 113(1), 346–359 (2014)

    Article  Google Scholar 

  23. Zhao, J., Wang, G.-Y., Wu, Z.-F., Tang, H., Li, H.: The study on technologies for feature selection. In: Proceedings of the 2002 International Conference on Machine Learning and Cybernetics 2002, vol. 2, pp. 689–693. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choukri Djellali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Djellali, C., Adda, M. (2017). A New Scalable and Performance-Enhancing Bootstrap Aggregating Scheme for Variables Selection. In: Aïmeur, E., Ruhi, U., Weiss, M. (eds) E-Technologies: Embracing the Internet of Things . MCETECH 2017. Lecture Notes in Business Information Processing, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-319-59041-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59041-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59040-0

  • Online ISBN: 978-3-319-59041-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics