Skip to main content

Hierarchical Region-Network Sparsity for High-Dimensional Inference in Brain Imaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

Abstract

Structured sparsity penalization has recently improved statistical models applied to high-dimensional data in various domains. As an extension to medical imaging, the present work incorporates priors on network hierarchies of brain regions into logistic-regression to distinguish neural activity effects. These priors bridge two separately studied levels of brain architecture: functional segregation into regions and functional integration by networks. Hierarchical region-network priors are shown to better classify and recover 18 psychological tasks than other sparse estimators. Varying the relative importance of region and network structure within the hierarchical tree penalty captured complementary aspects of the neural activity patterns. Local and global priors of neurobiological knowledge are thus demonstrated to offer advantages in generalization performance, sample complexity, and domain interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., Varoquaux, G.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014)

    ArticleĀ  Google ScholarĀ 

  2. Anderson, M.L., Kinnison, J., Pessoa, L.: Describing functional diversity of brain regions and brain networks. Neuroimage 73, 50ā€“58 (2013)

    ArticleĀ  Google ScholarĀ 

  3. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1ā€“106 (2012)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  4. Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, F.C.: Function in the human connectome: task-FMRI and individual differences in behavior. Neuroimage 80, 169ā€“189 (2013)

    ArticleĀ  Google ScholarĀ 

  5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183ā€“202 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001ā€“1013 (2005)

    ArticleĀ  Google ScholarĀ 

  7. Bzdok, D., Eickenberg, M., Grisel, O., Thirion, B., Varoquaux, G.: Semi-supervised factored logistic regression for high-dimensional neuroimaging data. In: Advances in Neural Information Processing Systems, pp. 3330ā€“3338 (2015)

    Google ScholarĀ 

  8. Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain FMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914ā€“19289 (2012)

    ArticleĀ  Google ScholarĀ 

  9. Doria, V., Beckmann, C.F., Arichia, T., Merchanta, N., Groppoa, M., Turkheimerb, F.E., Counsella, S.J., Murgasovad, M., Aljabard, P., Nunesa, R.G., Larkmana, D.J., Reese, G., Edwards, A.D.: Emergence of resting state networks in the preterm human brain. Proc. Natl. Acad. Sci. USA 107(46), 20015ā€“20020 (2010)

    ArticleĀ  Google ScholarĀ 

  10. Harchaoui, Z., Douze, M., Paulin, M., Dudik, M., Malick, J.: Large-scale image classification with trace-norm regularization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3386ā€“3393. IEEE (2012)

    Google ScholarĀ 

  11. Iaria, G., Fox, C.J., Waite, C.T., Aharon, I., Barton, J.J.: The contribution of the fusiform gyrus and superior temporal sulcus in processing facial attractiveness: neuropsychological and neuroimaging evidence. Neuroscience 155(2), 409ā€“422 (2008)

    ArticleĀ  Google ScholarĀ 

  12. Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., Thirion, B.: Multi-scale mining of FMRI data with hierarchical structured sparsity. SIAM J. Imaging Sci. 5(3), 835ā€“856 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. arXiv preprint arXiv:0909.1440 (2009)

  14. Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107(25), 11163ā€“11170 (2010)

    ArticleĀ  Google ScholarĀ 

  15. Passingham, R.E., Stephan, K.E., Kotter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3(8), 606ā€“616 (2002)

    ArticleĀ  Google ScholarĀ 

  16. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825ā€“2830 (2011)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B.T.T., Buckner, R.L.: The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6(6), e1000808 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Beckmann, C.F.: Correspondence of the brainā€™s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106(31), 13040ā€“13045 (2009)

    ArticleĀ  Google ScholarĀ 

  19. Sporns, O.: Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17(5), 652ā€“660 (2014)

    ArticleĀ  Google ScholarĀ 

  20. Varoquaux, G., Gramfort, A., Thirion, B.: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. arXiv preprint. arXiv:1206.6447 (2012)

  21. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Philos. Trans. R. Soc. Lond. B Biol. Sci. 68(1), 49ā€“67 (2006)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Zeki, S.M.: Functional specialisation in the visual cortex of the rhesus monkey. Nature 274(5670), 423ā€“428 (1978)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgement

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Bzdok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bzdok, D., Eickenberg, M., Varoquaux, G., Thirion, B. (2017). Hierarchical Region-Network Sparsity for High-Dimensional Inference in Brain Imaging. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics