Skip to main content

Computing with Biophysical and Hardware-Efficient Neural Models

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

  • 1922 Accesses

Abstract

In this paper we evaluate how seminal biophysical Hodgkin Huxley model and hardware-efficient TrueNorth model of spiking neurons can be used to perform computations on spike rates in frequency domain. This side-by-side evaluation allows us to draw connections how fundamental arithmetic operations can be realized by means of spiking neurons and what assumptions should be made on input to guarantee the correctness of the computed result. We validated our approach in simulation and consider this work as a first step towards FPGA hardware implementation of neuromorphic accelerators based on spiking models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophy. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  2. da Silva, R.M., de Macedo Mourelle, L., Nedjah, N.: Compact yet efficient hardware architecture for multilayer-perceptron neural networks. SBA: Controle Automacao Soc. Bras. de Automatica 22, 647–663 (2011)

    Google Scholar 

  3. Wang, R., Hamilton, T.J., Tapson, J., van Schaik, A.: An FPGA design framework for large-scale spiking neural networks. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 457–460, June 2014

    Google Scholar 

  4. Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., Alvarez-icaza, R., Datta, P., Sawada, J., Wong, T.M., Feldman, V., Amir, A., Rubin, D.B.-D., Mcquinn, E., Risk, W.P., Modha, D.S.: Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: International Joint Conference on Neural Networks (IJCNN). IEEE (2013)

    Google Scholar 

  5. Du, Z., Ben-Dayan Rubin, D.D., Chen, Y., He, L., Chen, T., Zhang, L., Wu, C., Temam, O.: Neuromorphic accelerators: a comparison between neuroscience and machine-learning approaches. In: Proceedings of the 48th International Symposium on Microarchitecture, MICRO-48, pp. 494–507. ACM, New York (2015)

    Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  7. Roth, A., van Rossum, M.C.W.: Modeling synapses. Comput. Model. Methods Neurosci. 6, 139–160 (2009)

    Article  Google Scholar 

  8. Schüz, A., Palm, G.: Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 286(4), 442–455 (1989)

    Article  Google Scholar 

  9. Drion, G., Massotte, L., Sepulchre, R., Seutin, V.: How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput. Biol. 7(5), e1002050 (2011)

    Article  Google Scholar 

  10. Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., Svoboda, K.: Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917), 788–794 (2002)

    Article  Google Scholar 

  11. Dan, Y., Poo, M.-M.: Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86(3), 1033–1048 (2006)

    Article  Google Scholar 

  12. Jia, H., Rochefort, N.L., Chen, X., Konnerth, A.: Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293), 1307–1312 (2010)

    Article  Google Scholar 

  13. Brette, R.: What is the most realistic single-compartment model of spike initiation? PLOS Comput. Biol. 11(4), 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  14. Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  15. Hines, M.: NEURON a program for simulation of nerve equations. In: Eeckman, F.H. (ed.) Neural Systems: Analysis and Modeling, pp. 127–136. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  16. Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  17. Sarpeshkar, R., Watts, L., Mead, C.: Refractory Neuron Circuits. Caltech Authors, Pasadena (1992)

    Google Scholar 

  18. Graas, E.L., Brown, E.A., Lee, R.H.: An FPGA-based approach to high-speed simulation of conductance-based neuron models. Neuroinformatics 2(4), 417–435 (2004)

    Article  Google Scholar 

  19. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Hafliger, P., Renaud, S., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)

    Google Scholar 

  20. Hasani, R.M., Ferrari, G., Yamamoto, H., Kono, S., Ishihara, K., Fujimori, S., Tanii, T., Prati, E.: Control of the correlation of spontaneous neuron activity in biological and noise-activated CMOS artificial neural microcircuits. arXiv preprint arXiv:1702.07426 (2017)

  21. Esser, S.K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A., Arthur, J.V., Cassidy, A., Flickner, M., Merolla, P., Chandra, S., Basilico, N., Carpin, S., Zimmerman, T., Zee, F., Alvarez-Icaza, R., Kusnitz, J.A., Wong, T.M., Risk, W.P., McQuinn, E., Nayak, T.K., Singh, R., Modha, D.S.: Cognitive computing systems: algorithms and applications for networks of neurosynaptic cores. In: IJCNN, pp. 1–10. IEEE (2013)

    Google Scholar 

  22. Amir, A., Datta, P., Risk, W.P., Cassidy, A.S., Kusnitz, J.A., Esser, S.K., Andreopoulos, E., Wong, T.M., Flickner, M., Alvarez-icaza, R., Mcquinn, E., Shaw, B., Pass, N., Modha, D.S.: Cognitive computing programming paradigm: a corelet language for composing networks of neurosynaptic cores. In: International Joint Conference on Neural Networks (IJCNN). IEEE (2013)

    Google Scholar 

  23. Selyunin, K., Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R.: Monitoring of MTL specifications with IBM’s spiking-neuron model. In: Proceedings of the 19th Design, Automation and Test in Europe Conference and Exhibition, DATE 2016, Dresden, Germany, 14–18 March 2016 (2016)

    Google Scholar 

  24. Van Vreeswijk, C., Abbott, L.F., Bard Ermentrout, G.: When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1(4), 313–321 (1994)

    Article  Google Scholar 

  25. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgment

This research is supported by the project HARMONIA (845631), funded by a national Austrian grant from FFG (Österreichische Forschungsförderungsgesellschaft) under the program IKT der Zukunft and the EU ICT COST Action IC1402 on Runtime Verification beyond Monitoring (ARVI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Selyunin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Selyunin, K., Hasani, R.M., Ratasich, D., Bartocci, E., Grosu, R. (2017). Computing with Biophysical and Hardware-Efficient Neural Models. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics