Skip to main content

Accelerating Electron Tomography Reconstruction Algorithm ICON Using the Intel Xeon Phi Coprocessor on Tianhe-2 Supercomputer

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Electron tomography (ET) is an important method for studying three-dimensional cell ultrastructure. Combining with a sub-volume averaging approach, ET provides new possibilities for investigating in situ macromolecular complexes in sub-nanometer resolution. Because of the limited sampling angles, ET reconstruction usually suffers from the ‘missing wedge’ problem. With a validation procedure, Iterative Compressed-sensing Optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a bottleneck for the application of ICON. In this work, we developed the strategies of parallelization for NUFFT and ICON, and then implemented them on a Xeon Phi 31SP coprocessor to generate the parallel program ICON-MIC. We also proposed a hybrid task allocation strategy and extended ICON-MIC on multiple Xeon Phi cards on Tianhe-2 supercomputer to generate program ICON-MULT-MIC. With high accuracy, ICON-MIC has a significant acceleration compared to the CPU version, up to 13.3x, and ICON-MULT-MIC has good weak and strong scalability efficiency on Tianhe-2 supercomputer.

Y. Chen—Contributes equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridman, K., Mader, A., Zwerger, M., Elia, N., Medalia, O.: Advances in tomography: probing the molecular architecture of cells. Nat. Rev. Mol. Cell Biol. 13(11), 736–742 (2012)

    Article  Google Scholar 

  2. Lučić, V., Rigort, A., Baumeister, W.: Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202(3), 407–419 (2013)

    Article  Google Scholar 

  3. Castaño-Díez, D., Kudryashev, M., Arheit, M., Stahlberg, H.: Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-em data in high-performance computing environments. J. Struct. Biol. 178(2), 139–151 (2012)

    Article  Google Scholar 

  4. Bharat, T.A., Russo, C.J., Löwe, J., Passmore, L.A., Scheres, S.H.: Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9), 1743–1753 (2015)

    Article  Google Scholar 

  5. Penczek, P., Marko, M., Buttle, K., Frank, J.: Double-tilt electron tomography. Ultramicroscopy 60(3), 393–410 (1995)

    Article  Google Scholar 

  6. Radermacher, M.: Weighted back-projection methods. In: Frank, J. (ed.) Electron Tomography, pp. 245–273. Springer, New York (2007)

    Google Scholar 

  7. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972)

    Article  Google Scholar 

  8. Chen, Y., Förster, F.: Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms. J. Struct. Biol. 185(3), 309–316 (2014)

    Article  Google Scholar 

  9. Lučić, V., Förster, F., Baumeister, W.: Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005)

    Article  Google Scholar 

  10. Chen, Y., Zhang, Y., Zhang, K., Deng, Y., Wang, S., Zhang, F., Sun, F.: FIRT: filtered iterative reconstruction technique with information restoration. J. Struct. Biol. 195(1), 49–61 (2016)

    Article  Google Scholar 

  11. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goris, B., Van den Broek, W., Batenburg, K., Mezerji, H.H., Bals, S.: Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012)

    Article  Google Scholar 

  14. Leary, R., Saghi, Z., Midgley, P.A., Holland, D.J.: Compressed sensing electron tomography. Ultramicroscopy 131, 70–91 (2013)

    Article  Google Scholar 

  15. Saghi, Z., Divitini, G., Winter, B., Leary, R., Spiecker, E., Ducati, C., Midgley, P.A.: Compressed sensing electron tomography of needle-shaped biological specimens-potential for improved reconstruction fidelity with reduced dose. Ultramicroscopy 160, 230–238 (2016)

    Article  Google Scholar 

  16. Deng, Y., Chen, Y., Zhang, Y., Wang, S., Zhang, F., Sun, F.: ICON: 3D reconstruction with missing-informationrestoration in biological electron tomography. J. Struct. Biol. 195(1), 100–112 (2016)

    Article  Google Scholar 

  17. Palenstijn, W., Batenburg, K., Sijbers, J.: Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J. Struct. Biol. 176(2), 250–253 (2011)

    Article  Google Scholar 

  18. Dahmen, T., Marsalek, L., Marniok, N., Turoňová, B., Bogachev, S., Trampert, P., Nickels, S., Slusallek, P.: The ettention software package. Ultramicroscopy 161, 110–118 (2016)

    Article  Google Scholar 

  19. Liao, X., Xiao, L., Yang, C., Lu, Y.: MilkyWay-2 supercomputer: system and application. Front. Comput. Sci. 8(3), 345–356 (2014)

    Article  MathSciNet  Google Scholar 

  20. Goldstein, A.A.: On steepest descent. J. Soc. Ind. Appl. Math. Ser. A: Control 3(1), 147–151 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. (TOMS) 36(4), 19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duran, A., Klemm, M.: The intel® many integrated core architecture. In: 2012 International Conference on High Performance Computing and Simulation (HPCS), pp. 365–366. IEEE (2012)

    Google Scholar 

  23. Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: High-Performance Computing on the Intel\({\textregistered }\) Xeon Phi\(^{\rm TM}\), vol. 5, p. 2. Springer, Heidelberg (2014)

    Google Scholar 

  24. Asai, R., Vladimirov, A.: Intel Cilk Plus for complex parallel algorithms: Enormous Fast Fourier Transforms (EFFT) library. Parallel Comput. 48, 125–142 (2015)

    Article  MathSciNet  Google Scholar 

  25. Robison, A.D.: Cilk Plus: language support for thread and vector parallelism. Talk at HP-CAST 18, 25 (2012)

    Google Scholar 

  26. Han, R., Zhang, F., Wan, X., Fernández, J.J., Sun, F., Liu, Z.: A marker-free automatic alignment method based on scale-invariant features. J. Struct. Biol. 186(1), 167–180 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the NSFC projects Grant Nos. U1611263, U1611261, 61232001, 61472397, 61502455, 61672493 and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB08030202), the National Basic Research Program (973 Program) of Ministry of Science and Technology of China (2014CB910700). The authors would like to thank Prof. Wanzhong He (NIBS, Beijing) for providing the resin embedded ET dataset. All the intensive computations were performed on Tianhe-2 supercomputer at the National Supercomputer Center in Guangzhou (NSCC-GZ), China and Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences (http://cbi.ibp.ac.cn).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Liu , Fei Sun or Fa Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Z. et al. (2017). Accelerating Electron Tomography Reconstruction Algorithm ICON Using the Intel Xeon Phi Coprocessor on Tianhe-2 Supercomputer. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics