Skip to main content

Plasmon Drag Effect. Theory and Experiment

  • Chapter
  • First Online:
Anisotropic and Shape-Selective Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1536 Accesses

Abstract

The plasmon drag effect was discovered about a decade ago in 2005. Since then, it has attracted considerable attention from the nanotechnology and photonics community due to fundamental physics of this effect as manifestation of electron plasmon coupling and myriad of possible applications in nanoelectronics, photonics and sensing. In this chapter, we review the recent advances in the plasmon drag effect studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattner, J. “Plenary: The Future of Silicon Photonics,” In Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest, Optical Society of America, paper JTuA1.

    Google Scholar 

  2. Kirchain, R., and L. Kimerling. 2007. A roadmap for nanophotonics. Nature Photonics 1: 303.

    Article  CAS  Google Scholar 

  3. Brongersma, M.L., and V.M. Shalaev. 2010. The case for plasmonics. Science 328: 440–441.

    Article  CAS  Google Scholar 

  4. Zia, R., J.A. Schuller, A. Chandran, and M.L. Brongersma. 2006. Plasmonics: The next chip-scale technology. Materials Today 9: 20–27.

    Article  CAS  Google Scholar 

  5. Sorger, V.J., R.F. Oulton, R.-M. Ma, and X. Zhang. 2012. Toward integrated plasmonic circuits. MRS Bulletin 37: 728.

    Article  CAS  Google Scholar 

  6. Engheta, N. 2007. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317: 1698.

    Article  CAS  Google Scholar 

  7. MacDonald, K.F., and N.I. Zheludev. 2010. Active plasmonics: Current status. Laser & Photonics Reviews 4: 562.

    Article  CAS  Google Scholar 

  8. Dionne, J.A., K. Diest, L.A. Sweatlock, and H.A. Atwater. 2009. PlasMOStor: A metal-oxide-Si field effect plasmonic modulator. Nano Letters 9: 897.

    Article  CAS  Google Scholar 

  9. Sorger, V.J., N. Pholchai, E. Cubukcu, R.F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang. 2011. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Letters 11: 4907.

    Article  CAS  Google Scholar 

  10. Ebbesen, T.W., C. Genet, and S. Bozhevolnyi. 2008. Surface plasmon circuity. Physics Today (May): 44–50.

    Google Scholar 

  11. deLeon, N.P., M.D. Lukin, and H.D. Park. 2012. Quantum plasmonic circuits. IEEE Journal of Selected Topics in Quantum Electronics 18: 1781.

    Google Scholar 

  12. Kriesch, A., S.P. Burgos, D. Ploss, H. Pfeifer, H.A. Atwater, and U. Peschel. 2013. Functional plasmonic nanocircuits with low insertion and propagation losses. Nano Letters 13 (9): 4539–4545.

    Article  CAS  Google Scholar 

  13. Rewitz, C., G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawłowska, B. Hecht, and T. Brixner. 2014. Coherent control of plasmon propagation in a nanocircuit. Physical Review Applied 1: 014007. doi:https://doi.org/10.1103/PhysRevApplied.1.014007.

  14. Fang, Yu, and M. Sun. 2015. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light: Science and Applications 4: e294. doi:10.1038/lsa.2015.67.

  15. Wei, H., Z.X. Wang, X.R. Tian, M. Kall, and H.X. Xu. 2011. Cascaded logic gates in nanophotonic plasmon networks. Nature Communications 12 (2): 387. doi:10.1038/ncomms1388.

    Article  Google Scholar 

  16. Wu, Yaw-Dong, Yung-Ta, Hsueh, and Tien-Tsorng, Shih. 2013. Novel all-optical logic gates based on microring metal-insulator-metal plasmonic waveguides, 169–172, Stockholm, August 12–15, 2013.

    Google Scholar 

  17. Brolo, A.G. 2012. Plasmonics for future biosensors. Nature Photonics 6: 709–713.

    Article  CAS  Google Scholar 

  18. Anker, J.N., W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, and R.P. Van Duyne. 2008. Biosensing with plasmonic nanosensors. Nature Materials 7: 442–453.

    Article  CAS  Google Scholar 

  19. Hill, Ryan T. 2015. Plasmonic biosensors. WIREs Nanomedicine Nanobiotechnolgy 7: 152–168. doi:10.1002/wnan.1314.

  20. Nguyen, H.H., J. Park, S. Kang, and M. Kim. 2015. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 15: 10481–10510. doi:10.3390/s150510481.

    Article  CAS  Google Scholar 

  21. Gibson, A.F., M.f. Kimmitt, A.C. Walker. 1970. Photon drag in germanium. Applied Physics Letters 17: 75.

    Google Scholar 

  22. Danishevskii, A.M., A.A. Kastal’skii, S.M. Ryvkin, and I.D. Yaroshetskii. 1970. Dragging of free carriers by photons in direct interband transitions in semiconductors. Soviet Physics JETP 31: 292.

    Google Scholar 

  23. Serafetinides, A.A., and M.F. Kimmitt. 1978. Photon-drag detection in p-type silicon. Journal of Physics D. Applied Physics 11: L97.

    Article  CAS  Google Scholar 

  24. Gibson, A.F., and S. Montasser. 1975. A theoretical description of the photon-drag spectrum of p-type germanium. Journal of Physics C 8: 3147.

    Article  CAS  Google Scholar 

  25. Luryi, S. 1987. Photon-drag effect in intersubband absorption by a two-dimensional electron gas. Physical Review Letters 58: 2263–2266.

    Article  CAS  Google Scholar 

  26. Grinberg, A.A., and S. Luryi. 1991. Light-induced drift of quantum-confined electrons in semiconductor heterostructures. Physical Review Letters 67: 156.

    Article  CAS  Google Scholar 

  27. Shalaev, V.M., C. Douketis, and M. Moskovits. 1992. Light-induced drift of electrons in metals. Physics Letters A 169: 205.

    Article  CAS  Google Scholar 

  28. Shalaev, V.M., C. Douketis, J.T. Stuckless, and M. Moskovits. 1996. Light-induced kinetic effects in solids. Physical Review B 53: 11388.

    Article  CAS  Google Scholar 

  29. Gurevich, V.L., R. Laiho, and A.V. Lashkul. 1992. Photomagnetism of metals. Physical Review Letters 69: 180.

    Article  CAS  Google Scholar 

  30. Gurevich, V.L., and R. Laiho. 1993. Photomagnetism of metals: Microscopic theory of the photoinduced surface current. Physical Review B 48: 8307.

    Article  CAS  Google Scholar 

  31. Gurevich, V.L., and R. Laiho. 2000. Photomagnetism of metals. First observation of dependence on polarization of light. Physics of the Solid State 42: 1807.

    Article  CAS  Google Scholar 

  32. Stockman, M.L., L.N. Pandey, and T.F. George. 1990. Physical Review Letters 65: 3433.

    Article  CAS  Google Scholar 

  33. Garate, E., R. Cook, C. Shaughnessy, G. Boudreaux, and J. Walsh. 1986. Boradband photon drag detector for pulsed, high-power radiation detection. International Journal of Infrared and Microwave Waves 7: 1827.

    Article  CAS  Google Scholar 

  34. Rogalski, A. 2010. Infrared detectors, 2nd ed, 898 p. Boca Raton: CRC Press.

    Google Scholar 

  35. Goff, J.E., and W.L. Schaich. 1997. Hydrodynamic model of photon drag. Physical Review B 56: 15421.

    Article  CAS  Google Scholar 

  36. Laiho, R. 1995. Observation of photinduced bulk current in metal. Physical Review B 52: 15054.

    Article  CAS  Google Scholar 

  37. Linic, S., P. Christopher, and D.B. Ingram. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials 10: 911–921.

    Article  CAS  Google Scholar 

  38. Govorov, A.O., H. Zhang, H.V. Demir, Yu. K. Gun’ko. 2014. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nanotoday 9: 85–101.

    Google Scholar 

  39. Brongersma, M.L., N.J. Halas, and P. Nordlander. 2015. Plasmon-induced hot carrier science and technology. Nature Nanotechnology 10: 25–34.

    Article  CAS  Google Scholar 

  40. Clavero, C. 2014. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 8: 95–103.

    Article  CAS  Google Scholar 

  41. Dombi, P., A. Hörl, P. Rácz, I. Márton, A. Trügler, J.R. Krenn, and U. Hohenester. 2013. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Letters 13: 674–678.

    Google Scholar 

  42. Mukherjee, S., F. Libisch, and N. Large. 2012. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Letters 13: 240–247.

    Article  Google Scholar 

  43. Lee, S.J., B.D. Piorek, C.D. Meinhart, and M. Moskovits. 2010. Photoreduction at a distance: Facile, nonlocal photoreduction of Ag ions in solution by plasmon-mediated photoemitted electrons. Nano Letters 10: 1329–1334.

    Article  CAS  Google Scholar 

  44. H. Raether. 1988. Surface plasmons on smooth and rough surfaces and on gratings. In Springer tracts in modern physics, 111. New York: Springer.

    Google Scholar 

  45. Kretschmann, E. 1972. Optics Communications 5: 331.

    Article  Google Scholar 

  46. Ritchie, R.H. 1973. Surface plasmons in solids. Surface Science 34: 1–19.

    Article  CAS  Google Scholar 

  47. Moskovits, M. 1985. Surface-enhanced spectroscopy. Reviews of Modern Physics 57: 783–826.

    Article  CAS  Google Scholar 

  48. Quinten, M., A. Leitner, J.R. Krenn, and F.R. Aussenegg. 1998. Electromagnetic energy transport via linear chains of silver nanoparticles. Optics Letters 23: 1331–1333.

    Article  CAS  Google Scholar 

  49. Averitt, R.D., S.L. Westcott, and N.J. Halas. 1999. Linear optical properties of gold nanoshells. Journal of the Optical Society of America B 1 (6): 1824–1832.

    Google Scholar 

  50. Mock, J.J., M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Chemical Physics 116 (116): 6755–6759.

    CAS  Google Scholar 

  51. Kreibig, U., and M. Vollmer. 1995. Optical properties of metal clusters, vol. 25. New York: Springer.

    Google Scholar 

  52. Su, K.-H., Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, and S. Schultz. 2003. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters 3: 1087–1090.

    Article  CAS  Google Scholar 

  53. Noginov, M.A., G. Zhu, M. Mayy, B.A. Ritzo, N. Noginova, and V.A. Podolskiy. 2008. Stimulated emission of surface plasmon polaritons. Physical Review Letters 101: 226806.

    Article  CAS  Google Scholar 

  54. Baudrion, A.-L., F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F.J. García-Vidal, J. Dintinger, T.W. Ebbesen, L. Martín-Moreno, and J.R. Krenn. 2008. Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Optics Express 16: 3420.

    Article  Google Scholar 

  55. Vengurlekar, A., and T. Ishiara. 2005. Surface plasmon enhanced photon drag in metal films. Applied Physics Letters 87: 091118.

    Article  Google Scholar 

  56. Noginova, N., A.V. Yakim, J. Soimo, L. Gu, and M.A. Noginov. 2011. Light-to-current and current-to-light coupling in plasmonic systems. Physical Review B 84: 035447.

    Article  Google Scholar 

  57. MWS Wire Industries Specifications, http://www.mwswire.com/.

  58. Kurosawa, H., and T. Ishihara. 2012. Surface plasmon drag effect in a dielectrically modulated metallic thin film. Optics Express 20 (2): 1561–1574. doi:10.1364/OE.20.001561.

    Article  CAS  Google Scholar 

  59. Kurosawa, H., T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto. 2012. Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime. Optics Letters 37 (14): 2793–2795. doi:10.1364/OL.37.002793.

    Article  CAS  Google Scholar 

  60. Durach, M., A. Rusina, and M.I. Stockman. 2009. Giant surface-plasmon-induced drag effect in metal nanowires. Physical Review Letters 103: 186801–1–4.

    Google Scholar 

  61. Noginova, N., V. Rono, F.J. Bezares, and J.D. Caldwell. 2013. Plasmon drag effect in metal nanostructures. New Journal of Physics 15: 113061. doi: http://dx.doi.org/10.1088/1367–2630/15/11/113061.

  62. Caldwell, J.D., O. Glembocki, F.J. Bezares, N.D. Bassim, R.W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten. 2011. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5: 4046.

    Article  CAS  Google Scholar 

  63. Simpkins, B.S., J.P. Long, O.J. Glembocki, J. Guo, J.D. Caldwell, and J.C. Owrutsky. 2012. Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays. Optics Express 20: 27725.

    Article  CAS  Google Scholar 

  64. Akbari, M., M. Onoda, and T. Ishihara. 2015. Photo-induced voltage in nano-porous gold thin film. Optics Express 23 (2): 823–832.

    Article  CAS  Google Scholar 

  65. Ishihara, T., T. Hatano, H. Kurosawa, Y. Kurami, N. Nishimura. 2012. Transverse voltage induced by circularly polarized obliquely incident light in plasmonic crystals. In Proceedings of SPIE 8461, Spintronics V, 846117 (October 1, 2012); doi:10.1117/12.933279.

  66. Ni, X., S. Xiao, Yu. Wang, Yang, and X. Zhang, Photon spin induced collective electron motion on a metasurface. CLEO:2015, OSA 2015, # FW4E.1.

    Google Scholar 

  67. Bai, Q. 2015. Manipulating photoinduced voltage in metasurface with circularly polarized light. 23 (4): 5348–5356. doi:10.1364/OE.23.005348.

  68. Kang, L., S. Lan, Y. Cui, S.P. Rodrigues, Y. Liu, D.H. Werner, and W. Cai. 2015. An Active Metamaterial Platform for Chiral Responsive Optoelectronics. Advanced Materials 27: 4377–4383. doi:10.1002/adma.201501930.

    Article  CAS  Google Scholar 

  69. Noginova, N., V. Rono, A. Jackson, and M. Durach. 2015. Controlling plasmon drag with illumination and surface geometry. OSA Technical Digest (online) (Optical Society of America, 2015), paper FTh3E.7. doi:10.1364/CLEO_QELS.2015.FTh3E.7.

  70. Allen, K.W., N. Farahi, Y. Li, N.I. Limberopoulos, D.E. Walker, A.M. Urbas, and V.N. Astratov. 2015. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Optics Express 23: 24484–24496.

    Article  CAS  Google Scholar 

  71. Stegeman, G., R. Wallis, and A. Maradudin. 1983. Excitation of surface polaritons by end-fire coupling. Optics Letters 8: 386–388.

    Article  CAS  Google Scholar 

  72. Landau, L.D., and E.M. Lifshitz. 2005. Theoretical physics. Electrodynamics of continuous media, vol. 8. Moscow: Nauka.

    Google Scholar 

  73. Merlin, R. 2009. Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. In Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. (6), 1693–1698.

    Google Scholar 

  74. Shimizu, Y., and H. Sasada. 1998. Mechanical Force in Laser Cooling and Trapping. American Journal of Physics 66 (11): 960–967.

    Article  CAS  Google Scholar 

  75. Ginzburg, P., A. Hayat, N. Berkovitch, and M. Orenstein. 2010. Nonlocal ponderomotive nonlinearity in plasmonics. Optics Letters 35 (10): 1551–1553.

    Article  Google Scholar 

  76. Bergman, D.J., and M.I. Stockman. 2003. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Physical Review Letters 90 (2): 027402.

    Article  Google Scholar 

  77. Noginov, M.A., G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner. 2009. Demonstration of a spaser-based nanolaser. Nature 460 (7259): 1110–1112.

    Article  CAS  Google Scholar 

  78. Chang, D.E., A.S. Sørensen, P.R. Hemmer, and M.D. Lukin. 2006. Quantum optics with surface plasmons. Physical Review Letters 97 (5): 053002.

    Article  CAS  Google Scholar 

  79. Iorsh, I., A. Poddubny, A. Orlov, P. Belov, and Y.S. Kivshar. 2012. Spontaneous emission enhancement in metal–dielectric metamaterials. Physics Letters A 376 (3): 185–187.

    Article  CAS  Google Scholar 

  80. Hussain, R., D. Keene, N. Noginova, and M. Durach. 2014. Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal. Optics Express 22 (7): 7744–7755.

    Article  CAS  Google Scholar 

  81. Huck, A., S. Smolka, P. Lodahl, A.S. Sørensen, A. Boltasseva, J. Janousek, and U.L. Andersen. 2009. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Physical Review Letters 102 (24): 246802.

    Article  Google Scholar 

  82. Di Martino, G., Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S.K. Özdemir, M.S. Kim, and S.A. Maier. 2012. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Letters 12 (5): 2504–2508.

    Article  Google Scholar 

  83. Zuloaga, J., E. Prodan, and P. Nordlander. 2009. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Letters 9 (2): 887–891.

    Article  CAS  Google Scholar 

  84. Zuloaga, J., E. Prodan, and P. Nordlander. 2010. Quantum plasmonics: Optical properties and tunability of metallic nanorods. ACS Nano 4 (9): 5269–5276.

    Article  CAS  Google Scholar 

  85. Durach, M., and N. Noginova. 2016. On nature of plasmonic drag effect. Physical Review B (Rapid Communication) 93: 161406(R).

    Google Scholar 

  86. Fann, W.S., R. Storz, H.W.K. Tom, and J. Bokor. 1992. Electron thermalization in gold. Physical Review B 46 (20): 13592.

    Article  CAS  Google Scholar 

  87. Sun, C.K., F. Vallée, L.H. Acioli, E.P. Ippen, and J.G. Fujimoto. 1994. Femtosecond-tunable measurement of electron thermalization in gold. Physical Review B 50 (20): 15337.

    Article  CAS  Google Scholar 

  88. Link, S., C. Burda, Z.L. Wang, and M.A. El-Sayed. 1999. Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. The Journal of Chemical Physics 111 (3): 1255–1264.

    Article  CAS  Google Scholar 

  89. Knight, M.W., H. Sobhani, P. Nordlander, and N.J. Halas. 2011. Photodetection with active optical antennas. Science 332 (6030): 702–704.

    Article  CAS  Google Scholar 

  90. Mukherjee, F., F. Libisch, N. Large, O. Neumann, L.V. Brown, J. Cheng, J.B. Lassiter, E.A. Carter, P. Nordlander, and N.J. Halas. 2012. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Letters 13 (1): 240–247.

    Article  Google Scholar 

  91. Clavero, C. 2014. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 8 (2): 95–103.

    Article  CAS  Google Scholar 

  92. Khurgin, J.B. 2015. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology 10 (1): 2–6.

    Article  CAS  Google Scholar 

  93. Khurgin, J.B. 2015. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discussions 178: 109–122.

    Article  CAS  Google Scholar 

  94. Brown, A.M., R. Sundararaman, P. Narang, W.A. Goddard III, and H.A. Atwater. 2015. Non-radiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces and geometry. ACS Nano 10 (1): 957–966.

    Article  Google Scholar 

  95. Brown, A.M., R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater. 2016. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B 94: 075120.

    Google Scholar 

  96. Johnson, P.B., and R.W. Christy. 1972. Optical constants of the noble metals. Physical Review B 6 (12): 4370.

    Article  CAS  Google Scholar 

  97. Fann, W.S., R. Storz, H.W.K. Tom, and J. Bokor. 1992. Electron thermalization in gold. Physical Review B 46 (20): 13592.

    Article  CAS  Google Scholar 

  98. Chandezon, J., G. Raoult, and D. Maystre. 1980. A new theoretical method for diffraction gratings and its numerical application. Journal of Optics 11 (4): 235.

    Article  Google Scholar 

  99. Noginova, N., M. LePain, V. Rono, S. Masshadi, R. Hussain, and M. Durach. 2016. Plasmon drag in profile-modulated gold film. Theory and experiment. New Journal of Physics 18: 093036.

    Article  Google Scholar 

  100. Sell, A., A. Leitenstorfer, and R. Huber. 2008. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters 33 (23): 2767–2769.

    Article  CAS  Google Scholar 

  101. Leinss, S., T. Kampfrath, K. Volkmann, M. Wolf, J.T. Steiner, M. Kira, S.W. Koch, A. Leitenstorfer, and R. Huber. 2008. Terahertz coherent control of optically dark paraexcitons in Cu2O. Physical Review Letters 101 (24): 246401-4.

    Google Scholar 

  102. Stockman, M.I. 2004. Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters 93 (13): 137404.

    Article  Google Scholar 

  103. Verhagen, E., M. Spasenovic, A. Polman, and L. Kuipers. 2009. Nanowire plasmon excitation by adiabatic mode transformation. Physical Review Letters 102(20): 203904–4.

    Google Scholar 

  104. MacDonald, K.F., Z.L. Samson, M.I. Stockman, and N.I. Zheludev. 2009. Ultrafast active plasmonics. Nature Photonics 3 (1): 55–58.

    Article  CAS  Google Scholar 

  105. Larkin, I.A., and M.I. Stockman. 2005. Imperfect perfect lens. Nano Letters 5 (2): 339–343.

    Article  CAS  Google Scholar 

  106. Aizpurua, J., and A. Rivacoba. 2008. Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams. Physical Review B 78 (3): 035404–035414.

    Article  Google Scholar 

  107. Gault, B., F. Vurpillot, A. Bostel, A. Menand, and B. Deconihout. 2005. Estimation of the tip field enhancement on a field emitter under laser illumination. Applied Physics Letters 86 (9): 094101–094103.

    Article  Google Scholar 

  108. Sha, G., A. Cerezo, and G.D.W. Smith. 2008. Field evaporation behavior during irradiation with picosecond laser pulses. Applied Physics Letters 92(4): 043503-3.

    Google Scholar 

  109. Ginzburg, P., A. Krasavin, S. Sonnefraud, A. Murphy, R. J. Pollard, S. A. Maier. A. V. Zayats. 2012. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation. Physical Review B 86: 085422 (2012).

    Google Scholar 

  110. Ginzburg, P., A. Krasavin, and A.V. Zayats. 2013. Cascaded second-order surface plasmon solitons due to intrinsic metal nonlinearity. New Journal of Physics 15: 013031.

    Article  Google Scholar 

  111. Panasyuk, G.Y., J.C. Schotland, and V.A. Markel. 2008. Classical theory of optical nonlinearity in conducting nanoparticles. Physical Review Letters 100: 047402.

    Article  Google Scholar 

  112. Masuhara, H,, S. Kawata. Nanoplasmonics: from fundamentals to applications, 334. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Durach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Durach, M., Noginova, N. (2017). Plasmon Drag Effect. Theory and Experiment. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_8

Download citation

Publish with us

Policies and ethics