Skip to main content

Semantic Vector Spaces for Broadening Consideration of Consequences

  • Chapter
  • First Online:
Autonomy and Artificial Intelligence: A Threat or Savior?

Abstract

Reasoning systems with too simple a model of the world and human intent are unable to consider potential negative side effects of their actions and modify their plans to avoid them (e.g., avoiding potential errors). However, hand-encoding the enormous and subtle body of facts that constitutes common sense into a knowledge base has proved too difficult despite decades of work. Distributed semantic vector spaces learned from large text corpora, on the other hand, can learn representations that capture shades of meaning of common-sense concepts and perform analogical and associational reasoning in ways that knowledge bases are too rigid to perform, by encoding concepts and the relations between them as geometric structures. These have, however, the disadvantage of being unreliable, poorly understood, and biased in their view of the world by the source material. This chapter will discuss how these approaches may be brought together in a way that combines the best properties of each for understanding the world and human intentions in a richer way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.

    Google Scholar 

  • Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.

    Google Scholar 

  • Blouw, P and Eliasmith, C. (2005) A neurally plausible encoding of word order information into a semantic vector space. 35th Annual conference of the cognitive science society Vol. 1910.

    Google Scholar 

  • Dash, D., Voortman, M., and De Jongh, M. (2013, August). Sequences of Mechanisms for Causal Reasoning in Artificial Intelligence. In IJCAI

    Google Scholar 

  • Deerwester, S., et al, Improving Information Retrieval with Latent Semantic Indexing, Proceedings of the 51st Annual Meeting of the American Society for Information Science 25, 1988, pp. 36–40.

    Google Scholar 

  • Dietterich, T. G., and Horvitz, E. J. (2015). Rise of concerns about AI: reflections and directions. Communications of the ACM, 58(10), 38-40.

    Google Scholar 

  • Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2014). Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166.

    Google Scholar 

  • Hawkins, J., and Blakeslee, S. (2007). On intelligence. Macmillan.

    Google Scholar 

  • Hayes, P. J. (1978). The naive physics manifesto. Institut pour les études sémantiques et cognitives/Université de Genève.

    Google Scholar 

  • Hinton, G. E. (1984). Distributed representations.

    Google Scholar 

  • Hofstadter, D. (1985). Metamagical themas: Questing for the essence of mind and pattern. Basic books.

    Google Scholar 

  • Hofstadter, D, and Sander, E. Surfaces and Essences. Basic Books, 2013.

    Google Scholar 

  • Huth, A. G., Nishimoto, S., Vu, A. T., and Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76(6), 1210-1224.

    Google Scholar 

  • Kanerva, P. (1988). Sparse distributed memory. MIT press.

    Google Scholar 

  • Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler, S. (2015). Skip-thought vectors. In Advances in neural information processing systems (pp. 3294-3302).

    Google Scholar 

  • Leech, R., Mareschal, D., and Cooper, R. P. (2008). Analogy as relational priming: A developmental and computational perspective on the origins of a complex cognitive skill. Behavioral and Brain Sciences, 31(04), 357-378.

    Google Scholar 

  • Lenat, D. B., Prakash, M., & Shepherd, M. (1985). CYC: Using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks. AI magazine, 6(4), 65.

    Google Scholar 

  • Levy, O., and Goldberg, Y. (2014). Dependency-Based Word Embeddings. In ACL (2) (pp. 302-308).

    Google Scholar 

  • Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., and Liu, S. (2015). Modeling relation paths for representation learning of knowledge bases. arXiv preprint arXiv:1506.00379.

    Google Scholar 

  • Neelakantan, A., Roth, B., and Mc-Callum, A. (2015, March). Compositional vector space models for knowledge base inference. In 2015 AAAI Spring Symposium Series.

    Google Scholar 

  • Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. (2015). Deep visual analogy-making. In Advances in Neural Information Processing Systems (pp. 1252-1260).

    Google Scholar 

  • Rei, M., and Briscoe, T. (2014, June). Looking for Hyponyms in Vector Space. In CoNLL (pp. 68-77).

    Google Scholar 

  • Rissman, J., and Wagner, A. D. (2012). Distributed representations in memory: insights from functional brain imaging. Annual review of psychology, 63, 101.

    Google Scholar 

  • Rothe, S., and Schütze, H. (2015). Autoextend: Extending word embeddings to embeddings for synsets and lexemes. arXiv preprint arXiv:1507.01127.

    Google Scholar 

  • Russell, S. (2014, November 14). Of Myths And Moonshine. Retrieved from edge.org/conversation/jaron_lanier-the-myth-of-ai

  • Sadeghi, F., Zitnick, C. L., and Farhadi, A. (2015). Visalogy: Answering visual analogy questions. In Advances in Neural Information Processing Systems (pp. 1882-1890).

    Google Scholar 

  • Speer, R., Havasi, C., and Lieberman, H. (2008, July). AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge. In AAAI (Vol. 8, pp. 548-553).

    Google Scholar 

  • Turney, P. D. (2006). Similarity of semantic relations. Computational Linguistics, 32(3), 379-416.

    Google Scholar 

  • Upchurch, P., Snavely, N., and Bala, K. (2016). From A to Z: Supervised Transfer of Style and Content Using Deep Neural Network Generators. arXiv preprint arXiv:1603.02003.

    Google Scholar 

  • Vosniadou, S., and Ortony, A. (1989). Similarity and analogical reasoning. Cambridge University Press.

    Google Scholar 

  • Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014, October). Knowledge Graph and Text Jointly Embedding. In EMNLP (pp. 1591-1601).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Summers-Stay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Summers-Stay, D. (2017). Semantic Vector Spaces for Broadening Consideration of Consequences. In: Lawless, W., Mittu, R., Sofge, D., Russell, S. (eds) Autonomy and Artificial Intelligence: A Threat or Savior?. Springer, Cham. https://doi.org/10.1007/978-3-319-59719-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59719-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59718-8

  • Online ISBN: 978-3-319-59719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics