Skip to main content

A Machine Learning-Driven Approach to Computational Physiological Modeling of Skin Cancer

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

Melanoma is the most lethal form of skin cancer in the world. To improve the accuracy of diagnosis, quantitative imaging approaches have been investigated. While most quantitative methods focus on the surface of skin lesions via hand-crafted imaging features, in this work, we take a machine-learning approach where abstract quantitative imaging features are learned to model physiological traits. In doing so, we investigate skin cancer detection via computational modeling of two major physiological features of melanoma namely eumelanin and hemoglobin concentrations from dermal images. This was done via employing a non-linear random forest regression model to leverage the plethora of quantitative features from dermal images to build the model. The proposed method was validated by separability test applied to clinical images. The results showed that the proposed method outperforms state-of-the-art techniques on predicting the concentrations of the skin cancer physiological features in dermal images (i.e., eumelanin and hemoglobin).

A. Wong—This research was undertaken, in part, thanks to funding from the Canada Research Chairs program. The study was also funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers, H.W., et al.: Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 146(3), 283 (2010)

    Article  Google Scholar 

  2. Ascierto, P., et al.: The role of spectrophotometry in the diagnosis of melanoma. BMC Dermatol. 10(1), 5 (2010)

    Article  Google Scholar 

  3. Thody, A., Higgins, E., Wakamatsu, K., Ito, S., Burchill, S., Marks, J.: Pheomelanin as well as eumelanin is present in human epidermis. J. Invest. Dermatol. 97(2), 344 (1991)

    Article  Google Scholar 

  4. Psaty, E.L., et al.: Current and emerging technologies in melanoma diagnosis: the state of the art. Clin. Dermatol. 27(1), 35–45 (2009)

    Article  Google Scholar 

  5. Day, G.R., Barbour, R.H.: Automated melanoma diagnosis: where are we at? Skin Res. Technol. 6(1), 1–5 (2000)

    Article  Google Scholar 

  6. Abbasi, N.R., et al.: Early diagnosis of cutaneous melanoma. JAMA: J. Am. Med. Assoc. 292(22), 2771–2776 (2004)

    Article  Google Scholar 

  7. Argenziano, G., et al.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J. Am. Acad. Dermatol. 48(5), 679–693 (2003)

    Article  Google Scholar 

  8. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  9. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014). Article no. 4006. doi:10.1038/ncomms5006

  10. Khalvati, F., Wong, A., Haider, M.A.: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med. Imaging 15(1), 27 (2015)

    Article  Google Scholar 

  11. Cameron, A., Khalvati, F., Haider, M., Wong, A.: MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans. Bio-med. Eng. 63(6), 1145–1156 (2016)

    Article  Google Scholar 

  12. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  13. Amelard, R., Glaister, J., Wong, A., Clausi, D.A., et al.: High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans. Biomed. Eng. 62(3), 820–831 (2015)

    Article  Google Scholar 

  14. Zonios, G., Dimou, A., Carrara, M., Marchesini, R.: In vivo optical properties of melanocytic skin lesions: common nevi, dysplastic nevi and malignant melanoma. Photochem. Photobiol. 86(1), 236–240 (2010)

    Article  Google Scholar 

  15. Garcia-Uribe, A., et al.: In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. J. Biomed. Optics 16(2), 020501 (2011)

    Article  Google Scholar 

  16. Menzies, S.W.: Automated epiluminescence microscopy: human vs machine in the diagnosis of melanoma. Arch. Dermatol. 135(12), 1538 (1999)

    Article  Google Scholar 

  17. Baranoski, G.V., Krishnaswamy, A.: Light and Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  18. Lee, H.-C.: Color Imaging Science. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Cavalcanti, P.G., Scharcanski, J., Baranoski, G.V.: A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert Syst. Appl. 40(10), 4054–4064 (2013)

    Article  Google Scholar 

  21. Stigler, S.M.: Statistics on the Table: The History of Statistical Concepts and Methods. Harvard University Press, Cambridge (2002)

    MATH  Google Scholar 

  22. DermIS, November 2014. http://www.dermis.net

  23. DermQuest, November 2014. http://www.dermquest.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Khalvati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cho, D.S., Khalvati, F., Clausi, D.A., Wong, A. (2017). A Machine Learning-Driven Approach to Computational Physiological Modeling of Skin Cancer. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics