Skip to main content

The Riemann–Roch Theorem

  • Chapter
  • First Online:
From Riemann to Differential Geometry and Relativity

Abstract

We sketch here a proof of the Riemann–Roch theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 1957 Grothendieck gave in Princeton another generalization of Riemann–Roch’s theorem that includes the result of Hirzebruch (cf. [3]). This generalisation is known as the Grothendieck–Hirzebruch–Riemann–Roch theorem.

  2. 2.

    This label is more meaningful for the case of complex manifolds of higher dimensions. In this case, the canonical bundle is the determinant bundle of \(T^{*}X\).

  3. 3.

    In the literature, this result, also true in higher dimensions, is called the Hodge theorem.

  4. 4.

    We say “justified” because there is a gap in his justification in [11] which is filled in for closed Riemann surfaces in his other paper [13].

  5. 5.

    This assertion is known as the moduli problem and for more historical details we refer the reader to [1].

References

  1. N. A’Campo, L. Ji, A. Papadopoulos, On the early history of moduli and Teichmüller spaces, in Lipman Bers, A life in Mathematics, eds. by L. Keen, I. Kra, R.E. Rodriguéz (Amer. Math. Soc., Providence, 2015), pp. 175–261

    Google Scholar 

  2. N. A’Campo, A. Papadopoulos, A commentary on Teichmüller’s paper Über Extremalprobleme der konformen Geometrie, in Handbook of Teichmüller theory, vol. VI, ed. by A. Papadopoulos (EMS Publishing House, Zürich 2016), pp. 595–600

    Google Scholar 

  3. A. Borel, J.-P. Serre, Le théorème de Riemann-Roch (d’après Grothendieck). Bull. Math. Soc. Fr. 86, 97–136 (1958)

    Article  MATH  Google Scholar 

  4. A. Brill, M. Noether, Über die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Ann. 7, 269–316 (1874)

    Article  Google Scholar 

  5. J.J. Gray, The Riemann–Roch theorem and geometry, 1854–1914. Doc. Math., J. DMV 3, 811–822 (1998)

    Google Scholar 

  6. P. Griffiths, J. Harris, Principles of Algebraic Geometry. Pure and Applied Mathematics (A Wiley-Interscience Publication, New York etc., 1978)

    Google Scholar 

  7. F. Hirzebruch, Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Natl. Acad. Sci. USA 40, 110–114 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Riemann, Theorie der Abel’schen functionen. J. Reine Angew. Math. 54, 115–155 (1857)

    Article  MathSciNet  Google Scholar 

  9. G. Roch, Über die Anzahl der willkürlichen constanten in algebraischen functionen. J. Reine Angew. Math. 64, 372–376 (1865)

    Article  MathSciNet  Google Scholar 

  10. H.P. de Saint-Gervais, Uniformisation des Surfaces de Riemann (Retour sur un théorème centenaire. ENS Éditions, Lyon, 2010)

    Google Scholar 

  11. O. Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss., Math.-Naturw. Kl. 22, 1–197 (1939). English translation by G. Théret, Extremal quasiconformal maps and quadratic differentials, in Handbook of Teichmüller theory, ed. by A. Papadopoulos, vol. V (EMS Publishing House, Zürich, 2015), pp. 321–484

    Google Scholar 

  12. O. Teichmüller, Über Extremalprobleme der konformen Geometrie. Deutsche Math. 6, 50–77 (1941). English translation by M. Karbe, On extremal problems of conformal geometry, in Handbook of Teichmüller theory, A. Papadopoulos, ed., vol. VI (EMS Publishing House, Zürich, 2016), pp. 567–594

    Google Scholar 

  13. O. Teichmüller, Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen. Abh. Preuss. Akad. Wiss., Math.-Naturw. Kl. 4, 1–42 (1943). English translation by A. A’Campo, Determination of extremal quasiconformal mappings of closed oriented Riemann surfaces, in Handbook of Teichmüller theory, A. Papadopoulos, ed., vol. V (EMS Publishing House, Zürich, 2016), pp. 533–567

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Athanase Papadop-oulos for giving them the opportunity for writing this chapter and especially for his patience, kindness, and constructive remarks. This work was partially supported by the French ANR grant FINSLER (Géométrie de Finsler et applications, ANR-12-BS01-0009). The last author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert A’Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

A’Campo, N., Alberge, V., Frenkel, E. (2017). The Riemann–Roch Theorem. In: Ji, L., Papadopoulos, A., Yamada, S. (eds) From Riemann to Differential Geometry and Relativity. Springer, Cham. https://doi.org/10.1007/978-3-319-60039-0_13

Download citation

Publish with us

Policies and ethics