Skip to main content

Thoracic Scoliosis (AIS) Posterior Surgery Complication

  • Chapter
  • First Online:
Spinal Deformity

Abstract

As treatment for adolescent idiopathic scoliosis (AIS) has evolved especially with more aggressive surgical correction, intraoperative neuromonitoring (IONM) has become critical part of the surgical procedure to ensure patient safety. One of the earliest techniques was the intraoperative wake-up test. While this had reportedly high sensitivity for detecting neurologic deficit, there were clear limitations to this technique as this defined gross motor function without detailed strength measurements. This promoted further research into other methods for monitoring and includes somatosensory-evoked potentials, transcranial motor-evoked potentials, neurogenic motor-evoked potentials, and electromyography. Combined IONM during spinal deformity correction is now the preferred method for detection and prevention of injury according to the Scoliosis Research Society. A thorough understanding of the basics of IONM is essential for any surgeon addressing AIS. This chapter reviews the history of neuromonitoring in spinal deformity surgery, focusing on the most common types of monitoring conducted today. It also reviews common causes for monitoring changes and recommended protocols for responding to changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. MacEwen GD, Bunnell WP, Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society. J Bone Joint Surg Am. 1975;57(3):404–8.

    Article  CAS  PubMed  Google Scholar 

  2. Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop Relat Res. 1973;93:173–8.

    Article  Google Scholar 

  3. Hall JE, Levine CR, Sudhir KG. Intraoperative awakening to monitor spinal cord function during Harrington instrumentation and spine fusion. Description of procedure and report of three cases. J Bone Joint Surg Am. 1978;60(4):533–6.

    Article  CAS  PubMed  Google Scholar 

  4. Pahys JM, Guille JT, D'Andrea LP, et al. Neurologic injury in the surgical treatment of idiopathic scoliosis: guidelines for assessment and management. J Am Acad Orthop Surg. 2009;17(7):426–34.

    Article  PubMed  Google Scholar 

  5. McCarthy RE, Lonstein JE, Mertz JD, et al. Air embolism in spinal surgery. J Spinal Disord. 1990;3(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  6. Wills J, Schwend RM, Paterson A, et al. Intraoperative visible bubbling of air may be the first sign of venous air embolism during posterior surgery for scoliosis. Spine (Phila Pa 1976). 2005;30(20):E629–35.

    Article  Google Scholar 

  7. Branigan TD, Roach JW. Principles of, indications for and responses to changes in neuromonitoring. Scoliosis Research Society E-Text: The Primary Resource for Education in the Field of Spine Deformity Care. Milwaukee: Scoliosis Research Society; 2015.

    Google Scholar 

  8. Ben-David B, Taylor PD, Haller GS. Posterior spinal fusion complicated by posterior column injury. A case report of a false-negative wake-up test. Spine (Phila Pa 1976). 1987;12(6):540–3.

    Article  CAS  Google Scholar 

  9. Hoppenfeld S, Gross A, Andrews C, et al. The ankle clonus test for assessment of the integrity of the spinal cord during operations for scoliosis. J Bone Joint Surg Am. 1997;79(2):208–12.

    Article  CAS  PubMed  Google Scholar 

  10. Ewen A, Bart BB, Goresky GV. The ankle clonus test for assessment of the integrity of the spinal cord during operations for scoliosis. J Bone Joint Surg Am. 1999;81(7):1044.

    Article  CAS  PubMed  Google Scholar 

  11. Ewen A, Cox RG, Davies SA, et al. The ankle clonus test is not a clinically useful measure of spinal cord integrity in children. Can J Anaesth. 2005;52(5):524–9.

    Article  PubMed  Google Scholar 

  12. Nash CL Jr, Lorig RA, Schatzinger LA, et al. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res. 1977;126:100–5.

    Google Scholar 

  13. Purves D. Neuroscience. 4th ed. Sunderland: Sinauer; 2008.

    Google Scholar 

  14. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–60.

    Article  PubMed  Google Scholar 

  15. Auerbach JD, Samdani AF, Dormans JP. Electrophysiological monitoring. In: Newton PO, O’Brien MF, Schufflebarger HL, Betz RR, Dickson RA, Harms J, editors. Idiopathic scoliosis. New York: Thieme; 2010.

    Google Scholar 

  16. Dawson EG, Sherman JE, Kanim LE, et al. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine (Phila Pa 1976). 1991;16(8 Suppl):S361–4.

    CAS  Google Scholar 

  17. Nuwer MR, Dawson EG, Carlson LG, et al. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  18. El-Hawary R, Sucato DJ, Sparagana S, et al. Spinal cord monitoring in patients with spinal deformity and neural axis abnormalities: a comparison with adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976). 2006;31(19):E698–706.

    Article  Google Scholar 

  19. Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine (Phila Pa 1976). 1993;18(6):737–47.

    Article  CAS  Google Scholar 

  20. Dinner DS, Luders H, Lesser RP, et al. Intraoperative spinal somatosensory evoked potential monitoring. J Neurosurg. 1986;65(6):807–14.

    Article  CAS  PubMed  Google Scholar 

  21. Forbes HJ, Allen PW, Waller CS, et al. Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br. 1991;73(3):487–91.

    CAS  PubMed  Google Scholar 

  22. Lubicky JP, Spadaro JA, Yuan HA, et al. Variability of somatosensory cortical evoked potential monitoring during spinal surgery. Spine (Phila Pa 1976). 1989;14(8):790–8.

    Article  CAS  Google Scholar 

  23. Bieber E, Tolo V, Uematsu S. Spinal cord monitoring during posterior spinal instrumentation and fusion. Clin Orthop Relat Res. 1988;229:121–4.

    Google Scholar 

  24. Scoliosis research society position statement. Somatosensory evoked potential monitoring of neurologic spinal cord function during spinal surgery. Milwaukee: Scoliosis Research Society; 1992.

    Google Scholar 

  25. Yamada T, Yeh M, Kimura J. Fundamental principles of somatosensory evoked potentials. Phys Med Rehabil Clin N Am. 2004;15(1):19–42.

    Article  PubMed  Google Scholar 

  26. Helmers SL, Hall JE. Intraoperative somatosensory evoked potential monitoring in pediatrics. J Pediatr Orthop. 1994;14(5):592–8.

    Article  CAS  PubMed  Google Scholar 

  27. Strahm C, Min K, Boos N, et al. Reliability of perioperative SSEP recordings in spine surgery. Spinal Cord. 2003;41(9):483–9.

    Article  CAS  PubMed  Google Scholar 

  28. Chatrian GE, Berger MS, Wirch AL. Discrepancy between intraoperative SSEP’s and postoperative function. Case report. J Neurosurg. 1988;69(3):450–4.

    Article  CAS  PubMed  Google Scholar 

  29. Hermanns H, Lipfert P, Meier S, et al. Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol-remifentanil anaesthesia. Br J Anaesth. 2007;98(3):362–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ryzhova OE, Tikhodeev SA, Vishnevskii AA, et al. Evaluation of the capacities of neurophysiological intraoperative monitoring in reconstructive surgery on the vertebral column. Zh Vopr Neirokhir Im N N Burdenko. 2003;1(1):27–31; discussion -2.

    Google Scholar 

  31. Tsai TM, Tsai CL, Lin TS, et al. Value of dermatomal somatosensory evoked potentials in detecting acute nerve root injury: an experimental study with special emphasis on stimulus intensity. Spine (Phila Pa 1976). 2005;30(18):E540–6.

    Article  Google Scholar 

  32. Pastorelli F, Di Silvestre M, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(Suppl 1):S105–14.

    Article  PubMed  Google Scholar 

  33. Ginsburg HH, Shetter AG, Raudzens PA. Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. Case report. J Neurosurg. 1985;63(2):296–300.

    Article  CAS  PubMed  Google Scholar 

  34. Hilibrand AS, Schwartz DM, Sethuraman V, et al. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am. 2004;86-A(6):1248–53.

    Article  PubMed  Google Scholar 

  35. Lesser RP, Raudzens P, Luders H, et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol. 1986;19(1):22–5.

    Article  CAS  PubMed  Google Scholar 

  36. Pelosi L, Lamb J, Grevitt M, et al. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113(7):1082–91.

    Article  PubMed  Google Scholar 

  37. Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89(11):2440–9.

    PubMed  Google Scholar 

  38. de Haan P, Kalkman CJ. Spinal cord monitoring: somatosensory- and motor-evoked potentials. Anesthesiol Clin North Am. 2001;19(4):923–45.

    Article  Google Scholar 

  39. Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.

    Google Scholar 

  40. Feng B, Qiu G, Shen J, et al. Impact of multimodal intraoperative monitoring during surgery for spine deformity and potential risk factors for neurological monitoring changes. J Spinal Disord Tech. 2012;25(4):E108–14.

    Article  PubMed  Google Scholar 

  41. Glassman SD, Zhang YP, Shields CB, et al. Transcranial magnetic motor-evoked potentials in scoliosis surgery. Orthopedics. 1995;18(10):1017–23.

    CAS  PubMed  Google Scholar 

  42. Luk KD, Hu Y, Wong YW, et al. Evaluation of various evoked potential techniques for spinal cord monitoring during scoliosis surgery. Spine (Phila Pa 1976). 2001;26(16):1772–7.

    Article  CAS  Google Scholar 

  43. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19(5):416–29.

    Article  PubMed  Google Scholar 

  44. MacDonald DB, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine (Phila Pa 1976). 2003;28(2):194–203.

    Article  Google Scholar 

  45. Noonan KJ, Walker T, Feinberg JR, et al. Factors related to false- versus true-positive neuromonitoring changes in adolescent idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2002;27(8):825–30.

    Article  Google Scholar 

  46. Salem KM, Goodger L, Bowyer K, et al. Does transcranial stimulation for motor evoked potentials (TcMEP) worsen seizures in epileptic patients following spinal deformity surgery? Eur Spine J. 2015;25:3044–8.

    Article  PubMed  Google Scholar 

  47. Schwartz DM, Dormans JP, Drummond DS, et al., editors. Transcranial electric motor evoked potential monitoring during spine surgery: is it safe? Edinburg: Scoliosis Research Society; 2007.

    Google Scholar 

  48. Padberg AM, Wilson-Holden TJ, Lenke LG, et al. Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery. An accepted standard of care. Spine (Phila Pa 1976). 1998;23(12):1392–400.

    Article  CAS  Google Scholar 

  49. Wilson-Holden TJ, Padberg AM, Parkinson JD, et al. A prospective comparison of neurogenic mixed evoked potential stimulation methods: utility of epidural elicitation during posterior spinal surgery. Spine (Phila Pa 1976). 2000;25(18):2364–71.

    Article  CAS  Google Scholar 

  50. Pereon Y, Bernard JM, Fayet G, et al. Usefulness of neurogenic motor evoked potentials for spinal cord monitoring: findings in 112 consecutive patients undergoing surgery for spinal deformity. Electroencephalogr Clin Neurophysiol. 1998;108(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  51. Su CF, Haghighi SS, Oro JJ, et al. “Backfiring” in spinal cord monitoring. High thoracic spinal cord stimulation evokes sciatic response by antidromic sensory pathway conduction, not motor tract conduction. Spine (Phila Pa 1976). 1992;17(5):504–8.

    Article  CAS  Google Scholar 

  52. Toleikis JR, Skelly JP, Carlvin AO, et al. Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol. 2000;111(4):736–42.

    Article  CAS  PubMed  Google Scholar 

  53. Deletis V. The ‘motor’ inaccuracy in neurogenic motor evoked potentials. Clin Neurophysiol. 2001;112(8):1365–6.

    Article  CAS  PubMed  Google Scholar 

  54. Minahan RE, Sepkuty JP, Lesser RP, et al. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol. 2001;112(8):1442–50.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson-Holden TJ, Padberg AM, Lenke LG, et al. Efficacy of intraoperative monitoring for pediatric patients with spinal cord pathology undergoing spinal deformity surgery. Spine (Phila Pa 1976). 1999;24(16):1685–92.

    Article  CAS  Google Scholar 

  56. Schwartz DM, Drummond DS, Ecker ML. Influence of rigid spinal instrumentation on the neurogenic motor evoked potential. J Spinal Disord. 1996;9(5):439–45.

    Article  CAS  PubMed  Google Scholar 

  57. Dimopoulos VG, Feltes CH, Fountas KN, et al. Does intraoperative electromyographic monitoring in lumbar microdiscectomy correlate with postoperative pain? South Med J. 2004;97(8):724–8.

    Article  PubMed  Google Scholar 

  58. Leppanen RE. Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(6):437–61.

    Article  PubMed  Google Scholar 

  59. Gunnarsson T, Krassioukov AV, Sarjeant R, et al. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976). 2004;29(6):677–84.

    Article  Google Scholar 

  60. Holland NR, Kostuik JP. Continuous electromyographic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery. Spine (Phila Pa 1976). 1997;22(21):2547–50.

    Article  CAS  Google Scholar 

  61. Clements DH, Morledge DE, Martin WH, et al. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine (Phila Pa 1976). 1996;21(5):600–4.

    Article  CAS  Google Scholar 

  62. Lewis SJ, Lenke LG, Raynor B, et al. Triggered electromyographic threshold for accuracy of thoracic pedicle screw placement in a porcine model. Spine (Phila Pa 1976). 2001;26(22):2485–9; discussion 90.

    Google Scholar 

  63. Lenke LG, Padberg AM, Russo MH, et al. Triggered electromyographic threshold for accuracy of pedicle screw placement. An animal model and clinical correlation. Spine (Phila Pa 1976). 1995;20(14):1585–91.

    Article  CAS  Google Scholar 

  64. Reidy DP, Houlden D, Nolan PC, et al. Evaluation of electromyographic monitoring during insertion of thoracic pedicle screws. J Bone Joint Surg Br. 2001;83(7):1009–14.

    Article  CAS  PubMed  Google Scholar 

  65. Shi YB, Binette M, Martin WH, et al. Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine (Phila Pa 1976). 2003;28(6):595–601.

    Google Scholar 

  66. Dickerman RD, Guyer R. Intraoperative electromyography for pedicle screws: technique is the key! J Spinal Disord Tech. 2006;19(6):463.

    Article  PubMed  Google Scholar 

  67. Anderson DG, Wierzbowski LR, Schwartz DM, et al. Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG. Spine (Phila Pa 1976). 2002;27(14):1577–81.

    Article  Google Scholar 

  68. Neuromonitoring Information Statement. SRS information statement 2009. Milwaukee: Scoliosis Research Society; 2009.

    Google Scholar 

  69. Lewis SJ, Gray R, Holmes LM, et al. Neurophysiological changes in deformity correction of adolescent idiopathic scoliosis with intraoperative skull-femoral traction. Spine (Phila Pa 1976). 2011;36(20):1627–38.

    Article  Google Scholar 

  70. Bernard JM, Pereon Y, Fayet G, et al. Effects of isoflurane and desflurane on neurogenic motor- and somatosensory-evoked potential monitoring for scoliosis surgery. Anesthesiology. 1996;85(5):1013–9.

    Article  CAS  PubMed  Google Scholar 

  71. Mahmoud M, Sadhasivam S, Salisbury S, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth W. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hubbard, E.W., Sucato, D.J. (2018). Thoracic Scoliosis (AIS) Posterior Surgery Complication. In: Mummaneni, P., Park, P., Crawford III, C., Kanter, A., Glassman, S. (eds) Spinal Deformity . Springer, Cham. https://doi.org/10.1007/978-3-319-60083-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60083-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60082-6

  • Online ISBN: 978-3-319-60083-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics