Skip to main content

The Role of Neuronavigation in Lumbar Spine Surgery

  • Chapter
  • First Online:
Modern Thoraco-Lumbar Implants for Spinal Fusion
  • 810 Accesses

Abstract

The need to improve accuracy and safety in the placement of pedicular screws is one of the main concerns of all spine surgeons. The different methods available to navigate the spine during surgical procedures may help to increase the correctness of instrumented spine surgery. Obviously, this point is particularly relevant in percutaneous and minimally invasive spinal surgery [3, 4, 7, 29].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abul-Kasim K, Soderberg M, Selariu E, Gusnnarson M, Kherad M, Ohlin A. Optimization of radiation exposure and image quality of the cone-beam O-arm intraoperative imaging system in spinal surgery. J Spinal Disord Tech. 2012;25:52–8.

    Article  PubMed  Google Scholar 

  2. Baghadi YM, Larson AN, McIntosh AL. Complications of pedicle screws in children 10 years old or younger: a case control study. Spine. 2013;38:E386–93.

    Article  Google Scholar 

  3. Bourgeois AC, Faulkener AR, Bradley YC, Pasciak AS, Barlow PB, Gash JR, Reid WS. Improved accuracy of minimally invasive transpedicular screw placement in the lumbar spine with 3-dimensional stereotactic image guidance. A comparative meta-analysis. J Spinal Disord Tech. 2015;28:324–9.

    Article  PubMed  Google Scholar 

  4. Costa F, Cardia A, Ortolina A, Galbusera F, Zerbi A, Fornari M. Spinal navigation: standard preoperative versus intraoperative computed tomography data set acquisition for computer-guidance system. Spine. 2011;36:294–2098.

    Article  Google Scholar 

  5. Costa F, Restelli U, Foglia E, Cardia A, Ortolina A, Tomei M, Fornari M, Banfi G. Economic study: a cost-effectiveness analysis of an intraoperative compared with a preoperative image-guided system in lumbar pedicle screw fixation in patients with degenerative spondylolisthesis. Spine J. 2014;14:1790–6.

    Article  PubMed  Google Scholar 

  6. Dea N, Fisher CG, Batke J, Strelzow J, Mendelsohn D, Paquette SJ, Kwon BK, Boyd MD, Dvorak MF, Street JT. Economic evolution comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J. 2016;16:23–31.

    Article  PubMed  Google Scholar 

  7. Drazin D, Kim TT, Polly DW, Johnson JP. Intraoperative spinal imaging and navigation. Neurosurg Focus. 2014;36(3):1–4.

    Article  Google Scholar 

  8. Ebraheim NA, Rollins JR, Xu R, Yeasting RA. Projection of the lumbar pedicle and its morphometric analysis. Spine. 1996;21:1296–300.

    Article  CAS  PubMed  Google Scholar 

  9. Ebraheim NA, Xu R, Darwich M, Yeasing RA. Anatomic relations between the lumbar pedicle and the adjacent neural structures. Spine. 1997;22:2338–41.

    Article  CAS  PubMed  Google Scholar 

  10. Foley KY, Smith MM. Image-guided spine surgery. Neurosurg Clin N Am. 1996;7:171–86.

    CAS  PubMed  Google Scholar 

  11. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine. 1990;15:11–4.

    Article  CAS  PubMed  Google Scholar 

  12. Hartl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162–72.

    Article  PubMed  Google Scholar 

  13. Holly LT, Bloch O, Johnson JP. Evaluation of registration techniques for spinal image guidance. J Neurosurg Spine. 2006;4:323–8.

    Article  PubMed  Google Scholar 

  14. Joseph JR, Smith BW, Patel RD, Park P. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine. 2016;25:339–44.

    Article  PubMed  Google Scholar 

  15. Kalfas IH, Kormos DW, murphy MA, McKenzie RL barnett GH, Bell GR. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg. 1995;83:641–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kim TT, Johson JP, Pashman R, Drazin D. Minimally invasive spinal surgery with intraoperative image-guided navigation. Biomed Res Int. 2016;2016:5716235. 7 pages

    PubMed  PubMed Central  Google Scholar 

  17. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy. Spine. 2007;32(3):E111–20.

    Article  PubMed  Google Scholar 

  18. Larson AN, Santos ERG, Polly DW, Leodonio GT, Sembrano JN, Mielke CH, Guidera KJ. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine. 2012;3:E188–94.

    Article  Google Scholar 

  19. Lien SB, Liou NH, SS W. Analysis of anatomic morphometry of the pedicles and the safe zone for through-pedicle procedures in the thoracic and lumbar spine. Eur Spine J. 2007;16:1215–22.

    Article  PubMed  Google Scholar 

  20. Luo TD, Polly DW, Leodonio CG, Wetjen NM, Larson AN. Accuracy of pedicle screw placement in children 10 years or younger using navigation and intraoperative CT. Clin Spine Surg. 2016;29:E135–8.

    PubMed  Google Scholar 

  21. Mason A, Paulsen R, Babuska JM, Rajpai bS, Burneikiene S, Nelson EL, Villavicencio AT. The accuracy of pedicle screw placement using intraoperative image guidance systems. A systematic review. J Neurosurg Spine. 2014;20:196–203.

    Article  PubMed  Google Scholar 

  22. Meyer B, Ryang YM. Yes we CAN! World Neurosurg. 2013;79:85–6.

    Article  PubMed  Google Scholar 

  23. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398:501–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neal L, Iorgulescu JB, Geannette G, Gebhard H, Saleh T, Tssiouris AJ, Hartl R. Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws. J Spinal Disord Tech. 2015;28:E298–303.

    Article  Google Scholar 

  25. Parker SL, McGirt MJ, Farber SH, Amin AG, Rick AM, Suk I, Bydou A, Sciubba DM, Wolinsky JP, Gokoslau ZL, Witham TF. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery. 2011;68:170–8.

    Article  PubMed  Google Scholar 

  26. Rahamathulla G, Nottmeier EW, Pirris SM, Deen HG, Pichelmann MA. Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurg Focus. 2014;36(3):E3.

    Article  Google Scholar 

  27. Rampersaud YR, Foley KT, Shen AC, Solomito S. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine. 2000;25:2637–45.

    Article  CAS  PubMed  Google Scholar 

  28. Richerand AD, Christodoulou E, Li Y, Caird MS, Jong N, Farley FA. Comparison of effective dose of radiation during pedicle screw placement using intraoperative computed tomography navigation versus fluoroscopy in children with spinal deformities. J Pediatr Orthop. 2016;36:530–3.

    Article  Google Scholar 

  29. Rumboldt Z, Huda W, All JW. Review of portable CT with assessment of a dedicated head CT scanner. Am J Neuroradiol. 2009;30:1630–6.

    Article  CAS  PubMed  Google Scholar 

  30. Schizas C, Michel J, Kosmopoulos V, Theumann N. Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J. 2007;16:613–7.

    Article  PubMed  Google Scholar 

  31. Verma R, Krishan S, Haendlmayer K, Mohsen A. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J. 2010;19:370–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Villard J, Ryang YM, Demetriades AK, Reinke A, Behr M, Preuss A, Meyer B, Ringel F. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation. Spine. 2014;39(13):1004–9.

    Article  PubMed  Google Scholar 

  33. Wood JM, McMillen J. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring - a retrospective review of 627 screws in 150 patients. Int J Spine Surg. 2014;8:27. Published on line 2014 Dec. 1 doi: 10-14444/1027

    Google Scholar 

  34. Zindrick MR, Wiltse LL, Doormik A, Widell EH, Knight GW, Patwardhon AG, Thomas JC, Rothman SL, Fields BT. Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine. 1987;12:160–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gualtiero Innocenzi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Innocenzi, G. (2018). The Role of Neuronavigation in Lumbar Spine Surgery. In: Delfini, R., Landi, A., Mancarella, C., Gregori, F. (eds) Modern Thoraco-Lumbar Implants for Spinal Fusion. Springer, Cham. https://doi.org/10.1007/978-3-319-60143-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60143-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60142-7

  • Online ISBN: 978-3-319-60143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics