Skip to main content

An Automated Colourimetric Test by Computational Chromaticity Analysis: A Case Study of Tuberculosis Test

  • Conference paper
  • First Online:
11th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2017)

Abstract

This paper presents an investigation into a novel approach for an automated universal colourimetric test by chromaticity analysis. This work particularly focuses on how a well-adjusted harmony between computational complexity and biochemical analysis can reduce the associated cost and unlock the limit on conventional chemical practice. The proposed research goal encompasses the potential to the criteria- anytime anywhere access, low cost, rapid detection, better sensitivity, specificity and accuracy. Our method includes obtaining the amount of colour change for each instance by delta E calculation. The system can provide the result in any ambient condition from the trajectory of colour change using Euclidean distance in LAB colour space. The strategy is verified on plasmonic ELISA based diagnosis of tuberculosis (TB). TB detection by plasmonic ELISA is a challenging, demanding and a time-consuming diagnosis. Completing the computation in real time, we circumvent the obstacle liberating the TB diagnosis in less than 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yetisen, A.K.: Holographic Sensors. Springer Theses (2014). doi:10.1007/978-3-319-13584-7

  2. Cate, D.M., Adkins, J.A., Mettakoonpitak, J., Henry, C.S.: Recent developments in paper-based microfluidic devices. Anal. Chem. 87, 19–41 (2015). doi:10.1021/ac503968p

    Article  Google Scholar 

  3. Yetisen, A.K., Martinez-Hurtado, J.L., Garcia-Melendrez, A., et al.: A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens. Actuators B Chem. 196, 156–160 (2014). doi:10.1016/j.snb.2014.01.077

    Article  Google Scholar 

  4. Suslick, K.S., Rakow, N.A., Sen, A.: Colorimetric sensor arrays for molecular recognition. Tetrahedron 60, 11133–11138 (2004). doi:10.1016/j.tet.2004.09.007

    Article  Google Scholar 

  5. Qin, X., Wang, R., Tsow, F., et al.: A colorimetric chemical sensing platform for real-time monitoring of indoor formaldehyde. IEEE Sens. J. 15, 1545–1551 (2015). doi:10.1109/JSEN.2014.2364142

    Article  Google Scholar 

  6. Luo, W., Greenbaum, A., Zhang, Y., Ozcan, A.: Synthetic aperture-based on-chip microscopy. Light Sci. Appl. (2015). doi:10.1038/lsa.2015.34

    Google Scholar 

  7. Shen, L., Hagen, J.A., Papautsky, I.: Point-of-care colorimetric detection with a smartphone. Lab Chip 12, 4240 (2012). doi:10.1039/c2lc40741h

    Article  Google Scholar 

  8. Tania, M.H., Lwin, K.T., Hossain, M.A.: Computational complexity of image processing algorithms for an intelligent mobile enabled tongue diagnosis scheme. In: 10th International Conference on Software, Knowledge, Information Management & Applications, Chengdu, China, p. 15 (2016). doi:10.1109/SKIMA.2016.7916193

  9. WHO: Tuberculosis (Fact sheet). In: Media Centre. WHO (2016)

    Google Scholar 

  10. UN Sustainable Development Goals: 17 Goals to Transform Our World

    Google Scholar 

  11. Blakemore, R., Story, E., Helb, D., et al.: Evaluation of the analytical performance of the Xpert MTB/RIF assay. J. Clin. Microbiol. 48, 2495–2501 (2010). doi:10.1128/JCM.00128-10

    Article  Google Scholar 

  12. UKVI: Tuberculosis tests for visa applicants - GOV. UK (2016)

    Google Scholar 

  13. NHS Tuberculosis (TB) - Diagnosis - NHS Choices. http://www.nhs.uk/Conditions/Tuberculosis/Pages/Diagnosis.aspx. Accessed 12 Jan 2017

  14. Tsai, T.-T., Shen, S.-W., Cheng, C.-M., Chen, C.-F.: Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci. Technol. Adv. Mater. 14, 44404 (2013). doi:10.1088/1468-6996/14/4/044404

    Article  Google Scholar 

  15. Osman, M.K., Mashor, M.Y., Jaafar, H.: Detection of mycobacterium tuberculosis in Ziehl-Neelsen stained tissue images using Zernike moments and hybrid multilayered perceptron network. In: 2010 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4049–4055. IEEE (2010). doi:10.1109/ICSMC.2010.5642191

  16. Khademhosseini, A.: Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Deliv. Rev. 62, 449–457 (2011). doi:10.1016/j.addr.2009.11.016.Nano/microfluidics

    Google Scholar 

  17. Wang, S., Xu, F., Demirci, U.: Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnol. Adv. 28, 770–781 (2010). doi:10.1016/j.biotechadv.2010.06.004

    Article  Google Scholar 

  18. Shir, D., Ballard, Z.S., Ozcan, A.: Flexible plasmonic sensors. IEEE J. Sel. Top. Quantum Electron. (2016). doi:10.1109/JSTQE.2015.2507363

    Google Scholar 

  19. de la Rica, R., Stevens, M.M.: Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7, 821–824 (2012). doi:10.1038/nnano.2012.186

    Article  Google Scholar 

  20. Colorimetry - Part 4: CIE 1976 L*a*b* Colour Space. CIE (2007)

    Google Scholar 

  21. Mahy, M., Van Eycken, L., Oosterlinck, A.: Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19, 105–121 (1994). doi:10.1111/j.1520-6378.1994.tb00070.x

    Google Scholar 

  22. Sharma, G.: Digital Color Imaging Handbook, 1.7.2. CRC Press, Boca Raton (2003)

    Google Scholar 

Download references

Acknowledgement

This research is supported by the Erasmus Mundus FUSION project, British Council Newton Institutional Links and Newton-Ungku Omar Fund. This is a collaborative research project between Anglia Ruskin University (UK) and Universiti Putra Malaysia (Malaysia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Hoque Tania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hoque Tania, M. et al. (2017). An Automated Colourimetric Test by Computational Chromaticity Analysis: A Case Study of Tuberculosis Test. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics