Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 565))

Included in the following conference series:

Abstract

Analysis and classification of Electroencephalography (EEG) Data are still a big challenge. This kind if data is very sensitive and complex. EEG data plays a big role not only in medicine. The EEG data can be used as control commands of an external device, e.g. wheelchair, prosthesis, and many others. To do this, we need to establish models which can correctly classify captured EEG data. This paper presents a model based on Butterworth IIR filter, Fast Fourier transform (FFT), Singular Value Decomposition (SVD) and Decision Tree (DT) as a classifier. It can classify finger flexions with accuracy up to 92.241% for three fingers – thumb, index, and middle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bbci.de/competition/iv/.

References

  1. Akareddy, S.M., Kulkarni, P.: Eeg signal classification for epilepsy seizure detection using improved approximate entropy. Int. J. Pub. Health Sci. (IJPHS) 2(1), 23–32 (2013)

    Google Scholar 

  2. Aydemir, O., Kayikcioglu, T.: Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery. J. Neurosci. Methods 229, 68–75 (2014)

    Article  Google Scholar 

  3. Bajaj, V., Pachori, R.B.: EEG signal classification using empirical mode decomposition and support vector machine. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds.) SocProS 2011, pp. 623–635. Springer, New Delhi (2012). http://dx.doi.org/10.1007/978-81-322-0491-6_57

    Google Scholar 

  4. Butterworth, S.: On the theory of filter amplifiers. Wirel. Eng. 7(6), 536–541 (1930)

    Google Scholar 

  5. Chai, T.Y., Woo, S.S., Rizon, M., Tan, C.S.: Classification of human emotions from EEG signals using statistical features and neural network. Int. J. Integr. Eng. 1, 1–6 (2010). Penerbit UTHM

    Google Scholar 

  6. Chatrian, G., Lettich, E., Nelson, P.: Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am. J. EEG Technol. 25(2), 83–92 (1985)

    Google Scholar 

  7. Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 1381–1384. IEEE (1998)

    Google Scholar 

  8. Gokgoz, E., Subasi, A.: Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed. Sig. Process. Control 18, 138–144 (2015)

    Article  Google Scholar 

  9. Gunal, S., Ergin, S., Gunal, E.S., Uysal, A.K.: ECG classification using ensemble of features. In: 2013 47th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5. IEEE (2013)

    Google Scholar 

  10. Guo, L., Wu, Y., Zhao, L., Cao, T., Yan, W., Shen, X.: Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Trans. Magn. 47(5), 866–869 (2011)

    Article  Google Scholar 

  11. Haselsteiner, E., Pfurtscheller, G.: Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 8(4), 457–463 (2000)

    Article  Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  13. Khosrowabadi, R., Quek, H.C., Abdul, W., Ang, K.K.: EEG-based emotion recognition using self-organizing map for boundary detection. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 4242–4245, August 2010

    Google Scholar 

  14. Kottaimalai, R., Rajasekaran, M.P., Selvam, V., Kannapiran, B.: EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), pp. 227–231. IEEE (2013)

    Google Scholar 

  15. Li, S., Zhou, W., Cai, D., Liu, K., Zhao, J.: EEG signal classification based on EMD and SVM. Sheng wu yi xue gong cheng xue za zhi = J. Biomed. Eng. = Shengwu yixue gongchengxue zazhi 28(5), 891–894 (2011)

    Google Scholar 

  16. Mohammadi, G., Shoushtari, P., Molaee Ardekani, B., Shamsollahi, M.B.: Person identification by using AR model for EEG signals. In: Proceeding of World Academy of Science, Engineering and Technology, vol. 11, pp. 281–285 (2006)

    Google Scholar 

  17. Niedermeyer, E., Lopes da Silva, F.H.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005). http://opac.inria.fr/record=b1121162

    Google Scholar 

  18. Ochoa, J.B.: EEG signal classification for brain computer interface applications. Ecole Polytechnique Federale de Lausanne (2002)

    Google Scholar 

  19. Omerhodzic, I., Avdakovic, S., Nuhanovic, A., Dizdarevic, K.: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier. arXiv preprint arXiv:1307.7897 (2013)

  20. Polat, K., Güneş, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and Fast Fourier Transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theroy and Applications. World Scientific Publishing Co., Inc., River Edge (2008)

    MATH  Google Scholar 

  22. Schalk, G., Kubanek, J., Miller, K., Anderson, N., Leuthardt, E., Ojemann, J., Limbrick, D., Moran, D., Gerhardt, L., Wolpaw, J.: Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4(3), 264 (2007)

    Article  Google Scholar 

  23. Siuly, Li, Y., Wen, P.: Classification of EEG signals using sampling techniques and least square support vector machines. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) Rough Sets and Knowledge Technology, pp. 375–382. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/10.1007/978-3-642-02962-2_47

    Chapter  Google Scholar 

  24. Skillicorn, D.: Understanding Complex Datasets: Data Mining with Matrix Decompositions. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC, Boca Raton (2007)

    Book  MATH  Google Scholar 

  25. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010). http://www.sciencedirect.com/science/article/pii/S0957417410005695

    Article  Google Scholar 

  26. Tan, S., Steinbach, M., Kumar, V.: Classification: basic concepts. In: Decision Trees (2012)

    Google Scholar 

  27. Tolić, M., Jović, F.: Classification of wavelet transformed EEG signals with neural network for imagined mental and motor tasks. Kineziologija 45(1), 130–138 (2013)

    Google Scholar 

  28. Upadhyay, D.: Classification of EEG signals under different mental tasks using wavelet transform and neural network with one step Secant algorithm. Int. J. Sci. Eng. Technol. 2(4), 256–259 (2013)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation under the grant no. GJ16-25694Y and in part by the Grant of SGS No. SP2016/68, VSB-Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Prilepok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Prilepok, M., Jahan, I.S., Snasel, V. (2018). Detection of Finger Flexions Based on Decision Tree. In: Abraham, A., Haqiq, A., Ella Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Third International Afro-European Conference for Industrial Advancement — AECIA 2016. AECIA 2016. Advances in Intelligent Systems and Computing, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-60834-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60834-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60833-4

  • Online ISBN: 978-3-319-60834-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics