Skip to main content

Effective Generation of Dynamically Balanced Locomotion with Multiple Non-coplanar Contacts

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

Studies of computationally and analytically convenient approximations of rigid body dynamics have brought valuable insight into the field of humanoid robotics. Additionally, they facilitate the design of effective walking pattern generators. Going further than the classical Zero Moment Point-based methods, this paper presents two simple and novel approaches to solve for 3D locomotion with multiple non-coplanar contacts. Both formulations use model predictive control to generate dynamically balanced trajectories with no restrictions on the center of mass height trajectory. The first formulation treats the balance criterion as an objective function, and solves the control problem using a sequence of alternating convex quadratic programs. The second formulation considers the criterion as constraints, and solves a succession of convex quadratically constrained quadratic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldebaran: The Romeo project. http://projetromeo.com/

  2. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  Google Scholar 

  4. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method on real-time gait planning for a humanoid robot. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids’04), pp. 640–655 (2004)

    Google Scholar 

  5. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568–575 (2006)

    Article  Google Scholar 

  6. Herdt, A., Perrin, N., Wieber, P.: Walking without thinking about it. In: IEEE International Conference on Intelligent Robots and Systems (IROS’10), pp. 190–195 (2010)

    Google Scholar 

  7. Herdt, A., Perrin, N., Wieber, P.: LMPC based online generation of more efficient walking motions. In: IEEE/RAS International Conference on Humanoid Robotics (Humanoids’12), pp. 390–395 (2012)

    Google Scholar 

  8. Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K., Morisawa, M.: A universal stability criterion of the foot contact of legged robots - adios ZMP. In: IEEE International Conference on Robotics and Automation (ICRA’06), pp. 1976–1983 (2006)

    Google Scholar 

  9. Inomata, K., Uchimura, Y.: 3DZMP-based control of a humanoid robot with reaction forces at 3-dimensional contact points. In: IEEE International Workshop on Advanced Motion Control, pp. 402–407 (2010)

    Google Scholar 

  10. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’01), pp. 239–246 (2001)

    Google Scholar 

  11. Lee, S., Goswami, A.: Reaction Mass Pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA’07), pp. 4667–4672 (2007)

    Google Scholar 

  12. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with sums of squares programming. In: IEEE International Conference on Robotics and Automation (ICRA’13), pp. 4054–4061 (2013)

    Google Scholar 

  13. Mehanna, O., Huang, K., Gopalakrishnan, B., Konar, A., Sidiropoulos, N.D.: Feasible point pursuit and successive approximation of non-convex QCQPs. IEEE Signal Process. Lett. 22(7), 804–808 (2015)

    Article  Google Scholar 

  14. Moulard, T., Lamiraux, F., Bouyarmane, K., Yoshida, E., et al.: RobOptim: an optimization framework for robotics. In: The Robotics and Mechatronics Conference (ROBOMEC’13) (2013)

    Google Scholar 

  15. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  16. Trinkle, J.C., Pang, J.S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with coulomb friction. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 77(4), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vukobratović, M., Borovac, B.: Zero-moment point–thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  18. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wieber, P.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids’06), pp. 137–142 (2006)

    Google Scholar 

  20. Wieber, P.: Viability and predictive control for safe locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’08), pp. 1103–1108 (2008)

    Google Scholar 

Download references

Acknowledgements

The research presented in this paper was partially funded by the ROMEO2 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Perrin, N., Lau, D., Padois, V. (2018). Effective Generation of Dynamically Balanced Locomotion with Multiple Non-coplanar Contacts. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics