Skip to main content

Tumor Segmentation in Whole Slide Images Using Persistent Homology and Deep Convolutional Features

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

This paper presents a novel automated tumor segmentation approach for Hematoxylin & Eosin stained histology images. The proposed method enhances the segmentation performance by combining the topological and convolution neural network (CNN) features. Our approach is based on 3 steps: (1) construct enhanced persistent homology profiles by using topological features; (2) train a CNN to extract convolutional features; (3) employ a multi-stage ensemble strategy to combine Random Forest regression models. The experimental results demonstrate that proposed method outperforms the conventional CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litjens, G., Sanchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., Van Der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific reports 6 (2016)

    Google Scholar 

  2. Sieren, J.C., Weydert, J., Bell, A., De Young, B., Smith, A.R., Thiesse, J., Namati, E., McLennan, G.: An automated segmentation approach for highlighting the histological complexity of human lung cancer. Ann. Biomed. Eng. 38(12), 3581–3591 (2010)

    Article  Google Scholar 

  3. Khan, A.M., El-Daly, H., Rajpoot, N.: RanPEC: random projections with ensemble clustering for segmentation of tumor areas in breast histology images. In: Medical Image Understanding and Analysis, pp. 17–23 (2012)

    Google Scholar 

  4. Khan, A.M., El-Daly, H., Simmons, E., Rajpoot, N.M.: HyMaP: a hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images. J. Pathol. Inform. 4(2), 1 (2013)

    Article  Google Scholar 

  5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  6. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  7. Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P.-A., Guo, Y.B., Wang, L.Y., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  8. Camelyon 2016. https://camelyon16.grand-challenge.org/. Accessed 10 Mar 2017

  9. Qaiser, T., Sirinukunwattana, K., Nakane, K., Tsang, Y.-W., Epstein, D., Rajpoot, N.: Persistent homology for fast tumor segmentation in whole slide histology images. Procedia Comput. Sci. 90, 119–124 (2016)

    Article  Google Scholar 

  10. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zomorodian, A.J.: Topology for Computing, vol. 16. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  12. Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khan, A.M., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Article  Google Scholar 

  14. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. In: ACM Transactions on Graphics (TOG), vol. 27, no. 3, p. 67. ACM (2008)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  17. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)

    Google Scholar 

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

Download references

Acknowledgments

The first author (Qaiser) acknowledges the financial support provided by the University Hospital Coventry Warwickshire (UHCW) and the Department of Computer Science at the University of Warwick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Rajpoot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qaiser, T., Tsang, YW., Epstein, D., Rajpoot, N. (2017). Tumor Segmentation in Whole Slide Images Using Persistent Homology and Deep Convolutional Features. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics