Skip to main content

Exercise and Nutritional Concerns

  • Chapter
  • First Online:
Diabetes and Exercise

Part of the book series: Contemporary Diabetes ((CDI))

  • 2519 Accesses

Abstract

Recommended nutritional practices for optimal health, weight loss and maintenance, and sports performance for everyone are still being currently debated. Diabetes adds additional elements to managing exercise effectively and ensuring that the body has adequate nutrients and fuels to perform optimally. Nutritional recommendations differ somewhat based on an individual’s goal for exercising with diabetes, which may focus on diabetes and overall health benefits, weight control, athletic performance, or a combination of these. Healthy eating and a higher fiber intake will benefit health, but individuals with diabetes must also understand the impact the types and quantities of carbohydrates and other macronutrients have on their glycemic control. Weight loss and maintenance are best accomplished through lifestyle changes that include both improvements in diet and greater physical activity participation. Athletic performance and physical activity participation are greatly affected by nutrition, including adequate intake of macronutrients to replete muscle glycogen, micronutrients to optimize metabolism, water and other fluids to maintain hydration, and more. Nutritional best practices and recommendations are given in all of these areas in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association: 4. Lifestyle management. Diabetes Care. 2017;40:S33–43.

    Article  Google Scholar 

  2. Kay CD, Kris-Etherton PM, West SG. Effects of antioxidant-rich foods on vascular reactivity: review of the clinical evidence. Curr Atheroscler rep. 2006;8:510–22.

    Article  CAS  PubMed  Google Scholar 

  3. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress – implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. 2014;34:907–29.

    Article  CAS  PubMed  Google Scholar 

  4. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Micha R, Michas G, Lajous M, Mozaffarian D. Processing of meats and cardiovascular risk: time to focus on preservatives. BMC Med. 2013;11:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ericson U, Sonestedt E, Gullberg B, Hellstrand S, Hindy G, Wirfalt E, et al. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr. 2013;109:1143–53.

    Article  CAS  PubMed  Google Scholar 

  7. Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, et al. Effects of n-6 pufas compared with sfas on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012;95:1003–12.

    Article  CAS  PubMed  Google Scholar 

  8. Alhazmi A, Stojanovski E, McEvoy M, Garg ML. Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr. 2012;31:243–58.

    Article  CAS  PubMed  Google Scholar 

  9. Blaut M. Gut microbiota and energy balance: role in obesity. Proc Nutr Soc. 2014:1–8.

    Google Scholar 

  10. Otles S, Ozgoz S. Health effects of dietary fiber. Acta Sci Pol Technol Aliment. 2014;13:191–202.

    Article  CAS  PubMed  Google Scholar 

  11. Rose DJ. Impact of whole grains on the gut microbiota: the next frontier for oats? Br J Nutr. 2014;112(Suppl 2):S44–9.

    Article  CAS  PubMed  Google Scholar 

  12. Brand-Miller JC. Postprandial glycemia, glycemic index, and the prevention of type 2 diabetes. Am J Clin Nutr. 2004;80:243–4.

    CAS  PubMed  Google Scholar 

  13. Turner-McGrievy GM, Jenkins DJ, Barnard ND, Cohen J, Gloede L, Green AA. Decreases in dietary glycemic index are related to weight loss among individuals following therapeutic diets for type 2 diabetes. J Nutr. 2011;141:1469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I. Dietary glycemic index: health implications. J Am Coll Nutr. 2009;28(Suppl):446s–9s.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell MD, Walker M, Bracken RM, Turner D, Stevenson EJ, Gonzalez JT, et al. Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial. BMJ Open Diabetes Res Care. 2015;3:e000085.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brazeau AS, Mircescu H, Desjardins K, Leroux C, Strychar I, Ekoe JM, et al. Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes. Diabetes Res Clin Pract. 2013;99:19–23.

    Article  CAS  PubMed  Google Scholar 

  17. Brand-Miller J, Buyken AE. The glycemic index issue. Curr Opin Lipidol. 2012;23:62–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care. 2015;38:1008–15.

    Article  CAS  PubMed  Google Scholar 

  19. Wolpert HA, Atakov-Castillo A, Smith SA, Steil GM. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 2013;36:810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bozzetto L, Giorgini M, Alderisio A, Costagliola L, Giacco A, Riccardi G, et al. Glycaemic load versus carbohydrate counting for insulin bolus calculation in patients with type 1 diabetes on insulin pump. Acta Diabetol. 2015;52:865–71.

    Article  CAS  PubMed  Google Scholar 

  21. Kaviani M, Chilibeck PD, Yee P, Zello GA. The effect of consuming low- versus high-glycemic index meals after exercise on postprandial blood lipid response following a next-day high-fat meal. Nutr Diabetes. 2016;6:e216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalergis M, Schiffrin A, Gougeon R, Jones PJ, Yale JF. Impact of bedtime snack composition on prevention of nocturnal hypoglycemia in adults with type 1 diabetes undergoing intensive insulin management using lispro insulin before meals: a randomized, placebo-controlled, crossover trial. Diabetes Care. 2003;26:9–15.

    Article  PubMed  Google Scholar 

  23. Smart CE, Evans M, O’Connell SM, McElduff P, Lopez PE, Jones TW, et al. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care. 2013;36:3897–902. doi: 3810.2337/dc3813-1195. Epub 2013 Oct 3829

  24. Bao J, de Jong V, Atkinson F, Petocz P, Brand-Miller JC. Food insulin index: physiologic basis for predicting insulin demand evoked by composite meals. Am J Clin Nutr. 2009;90:986–92.

    Article  CAS  PubMed  Google Scholar 

  25. Bell KJ, Bao J, Petocz P, Colagiuri S, Brand-Miller JC. Validation of the food insulin index in lean, young, healthy individuals, and type 2 diabetes in the context of mixed meals: an acute randomized crossover trial. Am J Clin Nutr. 2015;102:801–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bao J, Gilbertson HR, Gray R, Munns D, Howard G, Petocz P, et al. Improving the estimation of mealtime insulin dose in adults with type 1 diabetes: the normal insulin demand for dose adjustment (nidda) study. Diabetes Care. 2011;34:2146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97:505–16.

    Article  CAS  PubMed  Google Scholar 

  28. Brazeau AS, Leroux C, Mircescu H, Rabasa-Lhoret R. Physical activity level and body composition among adults with type 1 diabetes. Diabet Med. 2012;29:e402–8. doi: 410.1111/j.1464-5491.2012.03757.x

  29. Thomas JG, Bond DS, Phelan S, Hill JO, Wing RR. Weight-loss maintenance for 10 years in the national weight control registry. Am J Prev Med. 2014;46:17–23.

    Article  PubMed  Google Scholar 

  30. Catenacci VA, Odgen L, Phelan S, Thomas JG, Hill J, Wing RR, et al. Dietary habits and weight maintenance success in high versus low exercisers in the national weight control registry. J Phys Act Health. 2014;11:1540–8.

    Article  PubMed  Google Scholar 

  31. Catenacci VA, Grunwald GK, Ingebrigtsen JP, Jakicic JM, McDermott MD, Phelan S, et al. Physical activity patterns using accelerometry in the national weight control registry. Obesity (Silver Spring). 2011;19:1163–70.

    Article  Google Scholar 

  32. Mitri J, Hamdy O. Diabetes medications and body weight. Expert Opin Drug Saf. 2009;8:573–84.

    Article  CAS  PubMed  Google Scholar 

  33. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374:1677–86.

    Article  PubMed  Google Scholar 

  35. Chomentowski P, Dube JJ, Amati F, Stefanovic-Racic M, Zhu S, Toledo FG, et al. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J Gerontol A Biol Sci Med Sci. 2009;64:575–80.

    Article  PubMed  Google Scholar 

  36. Wang X, Lyles MF, You T, Berry MJ, Rejeski WJ, Nicklas BJ. Weight regain is related to decreases in physical activity during weight loss. Med Sci Sports Exerc. 2008;40:1781–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015;115:1447–63.

    Article  PubMed  Google Scholar 

  38. Brown RJ, Wijewickrama RC, Harlan DM, Rother KI. Uncoupling intensive insulin therapy from weight gain and hypoglycemia in type 1 diabetes. Diabetes Technol Ther. 2011;13:457–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colberg SR: Diabetic athlete’s handbook. Human Kinetics, 2009.

    Google Scholar 

  40. Dube MC, Lavoie C, Galibois I, Weisnagel SJ. Nutritional strategies to prevent hypoglycemia at exercise in diabetic adolescents. Med Sci Sports Exerc. 2012;44:1427–32.

    Article  CAS  PubMed  Google Scholar 

  41. Castaneda-Gonzalez LM, Bacardi Gascon M, Jimenez Cruz A. Effects of low carbohydrate diets on weight and glycemic control among type 2 diabetes individuals: a systemic review of rct greater than 12 weeks. Nutr Hosp. 2011;26:1270–6.

    CAS  PubMed  Google Scholar 

  42. Krebs JD, Parry Strong A, Cresswell P, Reynolds AN, Hanna A, Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac J Clin Nutr. 2016;25:78–84.

    CAS  PubMed  Google Scholar 

  43. Veum VL, Laupsa-Borge J, Eng O, Rostrup E, Larsen TH, Nordrehaug JE, et al. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr. 2017;105:85–99.

    Article  CAS  PubMed  Google Scholar 

  44. Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41:773–92.

    Article  PubMed  Google Scholar 

  45. Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxford). 2008;192:127–35.

    Article  CAS  Google Scholar 

  46. Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2015;18:428–33.

    Article  CAS  PubMed  Google Scholar 

  48. Baker LB, Rollo I, Stein KW, Jeukendrup AE. Acute effects of carbohydrate supplementation on intermittent sports performance. Forum Nutr. 2015;7:5733–63.

    CAS  Google Scholar 

  49. McKewen MW, Rehrer NJ, Cox C, Mann J. Glycaemic control, muscle glycogen and exercise performance in iddm athletes on diets of varying carbohydrate content. Int J Sports Med. 1999;20:349–53.

    Article  CAS  PubMed  Google Scholar 

  50. Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–55.

    Article  PubMed  Google Scholar 

  51. Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;36:12–22.

    Article  CAS  PubMed  Google Scholar 

  52. Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591:4405–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, Mirtschin JG, Cato LE, Strobel N, Sharma AP, Hawley JA. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol 2016.

    Google Scholar 

  54. Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JA. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol. 2016;594:4389–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richter EA, Hargreaves M. Exercise, glut4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Article  CAS  PubMed  Google Scholar 

  56. Perrone C, Laitano O, Meyer F. Effect of carbohydrate ingestion on the glycemic response of type 1 diabetic adolescents during exercise. Diabetes Care. 2005;28:2537–8.

    Article  PubMed  Google Scholar 

  57. Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45.

    Article  CAS  PubMed  Google Scholar 

  58. Colberg SR, Laan R, Dassau E, Kerr D. Physical activity and type 1 diabetes: time for a rewire? J Diabetes Sci Technol. 2015;9:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Riddell MC, Milliken J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: an observational field study. Diabetes Technol Ther. 2011;13:819–25.

    Article  CAS  PubMed  Google Scholar 

  60. Francescato MP, Stel G, Stenner E, Geat M. Prolonged exercise in type 1 diabetes: performance of a customizable algorithm to estimate the carbohydrate supplements to minimize glycemic imbalances. PLoS ONE. 2015;10:e0125220.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Adolfsson P, Mattsson S, Jendle J. Evaluation of glucose control when a new strategy of increased carbohydrate supply is implemented during prolonged physical exercise in type 1 diabetes. Eur J Appl Physiol. 2015;115:2599–607.

    Article  CAS  PubMed  Google Scholar 

  62. Terada T, Wilson BJ, Myette-Comicronte E, Kuzik N, Bell GJ, McCargar LJ, et al. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism. 2016;65:599–608.

    Article  CAS  PubMed  Google Scholar 

  63. Gomez AM, Gomez C, Aschner P, Veloza A, Munoz O, Rubio C, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 diabetes patients on sensor-augmented insulin pump therapy. J Diabetes Sci Technol. 2015;9:619–24.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Turner D, Luzio S, Gray BJ, Dunseath G, Rees ED, Kilduff LP, et al. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand J Med Sci Sports. 2015;25:e99–109.

    Article  CAS  PubMed  Google Scholar 

  65. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36:537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pritchett K, Pritchett R. Chocolate milk: a post-exercise recovery beverage for endurance sports. Med Sport Sci. 2012;59:127–34.

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez JM, Moccia T, Fluckey JD, Ulbrecht JS, Farrell PA. Fluid snacks to help persons with type 1 diabetes avoid late onset postexercise hypoglycemia. Med Sci Sports Exerc. 2000;32:904–10.

    Article  CAS  PubMed  Google Scholar 

  68. Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al., Diabetes Research in Children Network Direcnet Study G. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147:528–34.

    Google Scholar 

  69. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Seaquist D, Topolski R. The prevalence of vitamin b(12) deficiency in patients with type 2 diabetes: A cross-sectional study. J Am Board Fam Med. 2009;22:528–34.

    Article  PubMed  Google Scholar 

  70. Reinstatler L, Qi YP, Williamson RS, Garn JV, Oakley GP Jr. Association of biochemical b deficiency with metformin therapy and vitamin b supplements: the national health and nutrition examination survey, 1999–2006. Diabetes Care. 2012;35:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sales CH, Pedrosa LF, Lima JG, Lemos TM, Colli C. Influence of magnesium status and magnesium intake on the blood glucose control in patients with type 2 diabetes. Clin Nutr. 2011;30:359–64.

    Article  CAS  PubMed  Google Scholar 

  72. Djurhuus MS, Skott P, Vaag A, Hother-Nielsen O, Andersen P, Parving HH, et al. Hyperglycaemia enhances renal magnesium excretion in type 1 diabetic patients. Scand J Clin Lab Invest. 2000;60:403–9.

    Article  CAS  PubMed  Google Scholar 

  73. Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009;22:235–46.

    CAS  PubMed  Google Scholar 

  74. Simmons D, Joshi S, Shaw J. Hypomagnesaemia is associated with diabetes: not pre-diabetes, obesity or the metabolic syndrome. Diabetes Res Clin Pract. 2010;87:261–6.

    Article  CAS  PubMed  Google Scholar 

  75. American Dietetic Association, American College of Sports Medicine, Rodriguez NR, Di Marco NM, Langley S. American college of sports medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41:709–31.

    Article  Google Scholar 

  76. Yardley JE, Colberg SR. Update on management of type 1 diabetes and type 2 diabetes in athletes. Curr Sports med rep. 2017;16:38–44.

    Article  PubMed  Google Scholar 

  77. Sharp RL. Role of whole foods in promoting hydration after exercise in humans. J Am Coll Nutr. 2007;26:592S–6S.

    Article  PubMed  Google Scholar 

  78. Adrogue HJ, Madias NE. The impact of sodium and potassium on hypertension risk. Semin Nephrol. 2014;34:257–72.

    Article  CAS  PubMed  Google Scholar 

  79. Joosten MM, Gansevoort RT, Mukamal KJ, Kootstra-Ros JE, Feskens EJ, Geleijnse JM, et al. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2013;61:1161–7.

    Article  CAS  PubMed  Google Scholar 

  80. Peacock OJ, Thompson D, Stokes KA. Voluntary drinking behaviour, fluid balance and psychological affect when ingesting water or a carbohydrate-electrolyte solution during exercise. Appetite. 2011;58:56–63.

    Article  PubMed  Google Scholar 

  81. Tamis-Jortberg B, Downs DA Jr, Colten ME. Effects of a glucose polymer sports drink on blood glucose, insulin, and performance in subjects with diabetes. Diabetes Educ. 1996;22:471–87.

    Article  CAS  PubMed  Google Scholar 

  82. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53:25–38.

    Article  CAS  PubMed  Google Scholar 

  83. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care. 2014;37:569–86.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee S, Hudson R, Kilpatrick K, Graham TE, Ross R. Caffeine ingestion is associated with reductions in glucose uptake independent of obesity and type 2 diabetes before and after exercise training. Diabetes Care. 2005;28:566–72.

    Article  CAS  PubMed  Google Scholar 

  85. Lane JD, Feinglos MN, Surwit RS. Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes. Diabetes Care. 2008;31:221–2.

    Article  CAS  PubMed  Google Scholar 

  86. Robinson LE, Savani S, Battram DS, McLaren DH, Sathasivam P, Graham TE. Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J Nutr. 2004;134:2528–33.

    CAS  PubMed  Google Scholar 

  87. Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 1985;2008(105):7–13.

    Google Scholar 

  88. Zaharieva DP, Miadovnik LA, Rowan CP, Gumieniak RJ, Jamnik VK, Riddell MC. Effects of acute caffeine supplementation on reducing exercise-associated hypoglycaemia in individuals with type 1 diabetes mellitus. Diabet Med. 2015.

    Google Scholar 

  89. Olateju T, Begley J, Green DJ, Kerr D. Physiological and glycemic responses following acute ingestion of a popular functional drink in patients with type 1 diabetes. Can J Diabetes. 2015;39:78–82.

    Article  PubMed  Google Scholar 

  90. Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids. 2012;43:519–29.

    Article  CAS  PubMed  Google Scholar 

  91. Gualano B, de Salles PV, Roschel H, Lugaresi R, Dorea E, Artioli GG, et al. Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. Eur J Appl Physiol. 2011;111:749–56.

    Article  CAS  PubMed  Google Scholar 

  92. Gualano B, De Salles Painneli V, Roschel H, Artioli GG, Neves M Jr, De Sa Pinto AL, et al. Creatine in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Med Sci Sports Exerc. 2011;43:770–8.

    Article  CAS  PubMed  Google Scholar 

  93. Kim HJ, Kim CK, Carpentier A, Poortmans JR. Studies on the safety of creatine supplementation. Amino Acids. 2011;40:1409–18.

    Article  CAS  PubMed  Google Scholar 

  94. Zaharieva DP, Riddell MC. Prevention of exercise-associated dysglycemia: a case study-based approach. Diabetes Spectr. 2015;28:55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Colberg, S. et al.. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. 2016;39(11); 2065–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheri R. Colberg PhD, FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Colberg, S.R. (2018). Exercise and Nutritional Concerns. In: Reusch, MD, J., Regensteiner, PhD, MA, BA, J., Stewart, Ed.D., FAHA, MAACVPR, FACSM , K., Veves, MD, DSc, A. (eds) Diabetes and Exercise. Contemporary Diabetes. Humana Press, Cham. https://doi.org/10.1007/978-3-319-61013-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61013-9_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-61011-5

  • Online ISBN: 978-3-319-61013-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics