Skip to main content

Mission Planning and Control

  • Chapter
  • First Online:
Aerial Manipulation

Part of the book series: Advances in Industrial Control ((AIC))

  • 1577 Accesses

Abstract

Unmanned aerial vehicles have attracted significant attention for a variety of structural inspection operations, for their ability to move in unstructured environments [3]. Typical examples include bridge inspection [26], power plant inspection [4], wind farm inspection [29], and maritime surveillance [28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbanas B, Ivanovic A, Car M, Haus T, Orsag M, Petrovic T, Bogdan S (2016) Aerial-ground robotic system for autonomous delivery tasks. In: 2016 IEEE international conference on robotics and automation (ICRA), pp 5463–5468. IEEE

    Google Scholar 

  2. Beutelspacher A, Rosenbaum U (1998) Projective geometry: from foundations to applications. Cambridge University Press

    Google Scholar 

  3. Bircher A, Kamel M, Alexis K, Burri M, Oettershagen P, Omari S, Mantel T, Siegwart R (2015) Three dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots. Auton Robots, 1–20

    Google Scholar 

  4. Burri M, Nikolic J, Hürzeler C, Caprari G, Siegwart R (2012) Aerial service robots for visual inspection of thermal power plant boiler systems. In: 2012 2nd international conference on applied robotics for the power industry (CARPI), pp 70–75. IEEE

    Google Scholar 

  5. Eberli D, Scaramuzza D, Weiss S, Siegwart R (2011) Vision based position control for mavs using one single circular landmark. J Intell Robot Syst, 495–512

    Google Scholar 

  6. Fabresse Felipe R, Fernando C, Ivan M, Anibal O (2014) Localization and mapping for aerial manipulation based on range-only measurements and visual markers. In: Proceedings of 2014 IEEE international conference on robotics & automation (ICRA), pp 2100–2106

    Google Scholar 

  7. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480

    Article  Google Scholar 

  8. Frazzoli E, Dahleh MA, Feron E (2002) Real-time motion planning for agile autonomous vehicles. J Guid Control Dyn 25(1):116–129

    Article  Google Scholar 

  9. Fumagalli M, Naldi R, Macchelli A, Carloni R, Stramigioli S, Marconi L (2012) Modeling and control of a flying robot for contact inspection. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3532–3537

    Google Scholar 

  10. Gray S, Clingerman C, Likhachev M, Chitta S (2011) Pr2: opening spring-loaded doors. In: Proceedings of IROS

    Google Scholar 

  11. Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton Robots. http://octomap.github.com

  12. Ishida M, Shimonomura K (2012) Marker based camera pose estimation for underwater robots. In: 2012 IEEE/SICE international symposium on system integration (SII), pp 629–634

    Google Scholar 

  13. Jimenez-Cano AE, Martin J, Heredia G, Ollero A, Cano R (2013) Control of an aerial robot with multi-link arm for assembly tasks. In: 2013 IEEE international conference on robotics and automation (ICRA), pp 4916–4921

    Google Scholar 

  14. Justin T, Giuseppe L, Koushil S, Vijay K (2014) Toward image based visual servoing for aerial grasping and perching. In: Proceedings of 2014 IEEE international conference on robotics & automation (ICRA), pp 2113–2118

    Google Scholar 

  15. Kanatani K, Liu W (1993) 3D interpretation of conics and orthogonality. CVGIP: Image Underst 58(3):286–301

    Google Scholar 

  16. Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM international workshop on augmented reality, 1999 (IWAR ’99), pp 85–94

    Google Scholar 

  17. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Article  Google Scholar 

  18. Kim S, Choi S, Kim HJ (2013) Aerial manipulation using a quadrotor with a two dof robotic arm. In: IEEE/RSJ international conference on intelligent robots and systems, Tokyo, Japan

    Google Scholar 

  19. Kondak K, Huber F, Schwarzbach M, Laiacker L, German S, Sommer D, Bejar M, Ollero A (2014) Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. In: 2014 international conference on robotics and automation (ICRA)

    Google Scholar 

  20. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Opt 9(1):112–147

    Article  MATH  MathSciNet  Google Scholar 

  21. Levine WS (1996) The control handbook. CRC press

    Google Scholar 

  22. Lindsey Q, Mellinger D, Kumar V (2012) Construction with quadrotor teams. Auton Robots 33(3):323–336

    Article  Google Scholar 

  23. Macchelli A, Forte F, Keemink AQL, Stramigioli S, Carloni R, Fumagalli M, Naldi R, Marconi L (2014) Developing an aerial manipulator prototype. IEEE Robot Autom Mag, 41–55

    Google Scholar 

  24. Mak LC, Furukawa T (2007) A 6 DoF visual tracking system for a miniature helicopter. In: 2nd international conference on sensing technology, pp 32–37. IIST, Massey University

    Google Scholar 

  25. Mellinger D, Kumar V (2011) Minimum snap trajectory generation and control for quadrotors. In: Proceedings IEEE international robotics and automation (ICRA) conference, pp 2520–2525

    Google Scholar 

  26. Metni N, Hamel T (2007) A UAV for bridge inspection: visual servoing control law with orientation limits. Autom Constr 17(1):3–10

    Article  Google Scholar 

  27. Murray RM, Rathinam M, Sluis W (1995) Differential flatness of mechanical control systems: a catalog of prototype systems. In: ASME international mechanical engineering congress and exposition. Citeseer

    Google Scholar 

  28. Nikola M, Stjepan B, Dula N, Filip M, Matko O, Tomislav H (2014) Unmanned marsupial sea–air system for object recovery. In: Proceedings 22nd mediterranean conference on control and automation

    Google Scholar 

  29. Orsag M, Haus T, Palunko I, Bogdan S (2015) State estimation, robust control and obstacle avoidance for multicopter in cluttered environments: Euroc experience and results. In: 2015 international conference on unmanned aircraft systems (ICUAS), pp 455–461. IEEE

    Google Scholar 

  30. Orsag M, Haus T, Tolić D, Ivanović A, Car M, Palunko I, Bogdan S (2016) Human-in-the-loop control of multi-agent aerial systems. In: European control conference

    Google Scholar 

  31. Pentenrieder K, Bade C, Doil F, Meier P (2007) Augmented reality-based factory planning - an application tailored to industrial needs. In: 6th IEEE and ACM international symposium on mixed and augmented reality, 2007, ISMAR 2007, pp 31–42

    Google Scholar 

  32. Petrinec K, Kovacic Z (2007) Trajectory planning algorithm based on the continuity of jerk. In: 2007 mediterranean conference on control & automation

    Google Scholar 

  33. Reza DSH, Mutijarsa K, Adiprawita W (2011) Mobile robot localization using augmented reality landmark and fuzzy inference system. In: 2011 international conference on electrical engineering and informatics (ICEEI), pp 1-6

    Google Scholar 

  34. Richter C, Bry A, Roy N (2013) Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Proceedings of the international symposium on robotics research (ISRR)

    Google Scholar 

  35. Rigatos G (2015) Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems, vol 25. Springer

    Google Scholar 

  36. Scholten JLJ, Fumagalli M, Stramigioli S, Carloni R (2013) Interaction control of an UAV endowed with a manipulator. In: 2013 IEEE international conference on robotics and automation (ICRA), pp 4910–4915

    Google Scholar 

  37. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer Science & Business Media

    Google Scholar 

  38. Sreenath K, Michael N, Kumar V (2013) Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system, pp 4888–4895. IEEE

    Google Scholar 

  39. Yang S, Scherer SA, Zell A (2013) An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J Intell Robot Syst 69:499–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matko Orsag .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Orsag, M., Korpela, C., Oh, P., Bogdan, S. (2018). Mission Planning and Control. In: Aerial Manipulation. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-61022-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61022-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61020-7

  • Online ISBN: 978-3-319-61022-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics