Skip to main content

Studying the Practice of High School Mathematics Teachers in a Single Computer Setting

  • Chapter
  • First Online:
Innovation and Technology Enhancing Mathematics Education

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 9))

Abstract

Many studies have examined the teaching of mathematics in technological environments that are accessible both to the teacher and to the students. Nevertheless, some classrooms are equipped with only one computer and a data projector. This study examined case studies of four different teachers who had previously worked in the high-tech industry and then became high school mathematics teachers that used technology in the classroom. Two technological environments were examined: (1) an environment in which teachers used a computer and a projector and (2) an environment that also included an interactive whiteboard (IWB). The study aimed at characterizing teaching practices and teacher knowledge in these two environments. An innovative framework was developed, based on three lenses: (1) the teachers’ goals; (2) the technological resources used; and (3) the way these resources were used. Findings indicate that teachers used a whole-class lecture style of teaching, mostly for explaining concepts. Although the teachers attempted to demonstrate mathematical concepts dynamically, either they tended to use the technology statically or they avoided using it. The teachers mostly used the IWB as a non-digital whiteboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    All names are pseudonyms.

References

  • Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83–104). Westport, CT: Ablex.

    Google Scholar 

  • Bruce, B. C., & Hogan, M. C. (1998). The disappearance of technology: Toward an ecological model of literacy. In D. Reinking, M. McKenna, L. Labbo, & R. Kieffer (Eds.), Handbook of literacy and technology: Transforming in a post-typographic word (pp. 269–281). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Clark-Wilson, A., Sinclair, N., & Robutti, O. (Eds.). (2013). The mathematics teacher in the digital era. Dordrecht: Springer.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.

    Article  Google Scholar 

  • Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013). Digital resources inviting changes in mid-adopting teachers’ practices and orchestrations. ZDM Mathematics Education, 45(7), 987–1001.

    Article  Google Scholar 

  • German, T., & Barrett, C. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16(1), 1–5.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Graeber, A., & Tirosh, D. (2008). Pedagogical content knowledge: A useful or an elusive notion? In P. Sullivan (Ed.), Knowledge and beliefs in mathematics teaching and teaching development (pp. 117–132). Amsterdam, The Netherlands: Sense.

    Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Google Scholar 

  • Hofer, M., & Harris, J. (2010). Differentiating TPACK development: Using learning activity types with inservice and preservice teachers. In C. D. Maddux, D. Gibson, & B. Dodge (Eds.), Research highlights in technology and teacher education 2010 (pp. 295–302). Chesapeake, VA: Society for Information Technology and Teacher Education (SITE).

    Google Scholar 

  • Hoyles, C., Noss, R., & Kent, P. (2004). On the integration of digital technologies into mathematics classrooms. International Journal of Computers for Mathematical Learning, 9(3), 309–326.

    Article  Google Scholar 

  • Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. In AACTE Committee on Innovation and Technology (Eds.), Handbook of technological pedagogical content knowledge (TPCK) for educators, (pp. 3–30). NY, USA: Routledge.

    Google Scholar 

  • Laborde C. (2003). Technology used as a tool for mediating knowledge in the teaching of mathematics: The case of Cabri-geometry. In W-C. Yang, S.C. Chu, T. de Alwis, Ming Gong Lee (Eds.), Proceedings of the 8th Asian Technology Conference in Mathematics (Vol. 1, pp. 23–38). Hsinchu, Taiwan ROC: Chung Hua University.

    Google Scholar 

  • Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: Multidimensional overview of recent research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (Vol. 1, pp. 237–270). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lagrange, J. B., & Monaghan, J. (2009). On the adoption of a model to interpret teachers’ use of technology in mathematics lessens. In V. Durand- Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 1605–1614). Lyon: INRP. Retrieved on April, 4th, 2011, from http://www.inrp.fr/editions/editions-electroniques/cerme6/working-group-9

  • Mioduser, D. (1998). Framework for the study of the cognitive nature and architecture of technological problem solving. Journal of Technology Education and Design, 8(2), 167–184.

    Article  Google Scholar 

  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.

    Article  Google Scholar 

  • Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Google Scholar 

  • Pepin, B., Gueudet, G., & Trouche, L. (eds.) (2013). Re-sourcing teacher work and interaction: new perspectives on resource design, use and teacher collaboration, special issue of ZDM. The International Journal on Mathematics Education, 45(7), 929–944.

    Google Scholar 

  • Pierce, R., & Ball, L. (2009). Perceptions that may affect teachers’ intention to use technology in secondary mathematics classes. Educational Studies in Mathematics, 71(3), 299–317).

    Google Scholar 

  • Rivera, F. (2007). Accounting for students’ schemes in the development of a graphical process for solving polynomial inequalities in instrumented activity. Educational Studies in Mathematics, 65, 281–307.

    Article  Google Scholar 

  • Robert, A., & Rogalski, J. (2005). A cross-analysis of the mathematics teacher’s activity. An example in a French 10th-grade class. Educational Studies in Mathematics, 59(1–3), 269–298.

    Article  Google Scholar 

  • Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom practice: The example of school mathematics. Education & Didactique, 3(1), 131–149.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Tabach, M. (2011). A mathematics teacher’s practice in a technological environment: A case study analysis using two complementary theories. Technology, Knowledge and Learning, 16(3), 247–265.

    Google Scholar 

  • Tabach, M. (2013). Applying instrumental orchestration framework to different educational institutions. CERME8- Eight Conference of European Research in Mathematics Education. Retrieved February, 14, 2013, from http://www.cerme8.metu.edu.tr/wgpapers/WG15/WG15_Tabach.pdf

  • Trouche, L. (2004). Managing the complexity of the human/machine interaction in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.

    Article  Google Scholar 

  • Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education: flashback into the future. ZDM, The International Journal on Mathematics Education, 42(7), 667–681. doi:10.1007/s11858-010-0269-2

    Article  Google Scholar 

  • VĂ©rillon, P., & Rabardel, P. (1995). Cognition and artifact: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education, 9(3), 1–33.

    Google Scholar 

  • Voogt, J., Fisser, P., Pareja Roblin, N., Tondeur, J., & van Braak, J. (2013). Technological pedagogical content knowledge—A review of the literature. Journal of Computer Assisted learning, 29(2), 109–112.

    Article  Google Scholar 

  • Zevenbergen, R., & Lerman, S. (2008). Learning environments using interactive whiteboards: New learning spaces or reproduction of old technologies? Mathematics Education Research Journal, 20(1), 108–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Tabach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tabach, M., Slutzky, G. (2017). Studying the Practice of High School Mathematics Teachers in a Single Computer Setting. In: Faggiano, E., Ferrara, F., Montone, A. (eds) Innovation and Technology Enhancing Mathematics Education. Mathematics Education in the Digital Era, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-61488-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61488-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61487-8

  • Online ISBN: 978-3-319-61488-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics