Skip to main content

Deciphering the Complexity of Historical Fire Regimes: Diversity Among Forests of Western North America

  • Chapter
  • First Online:
Dendroecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 231))

Abstract

Wildfire is a key disturbance agent in forests worldwide, but recent large and costly fires have raised urgent questions about how different current fire regimes are from those of the past. Dendroecological reconstructions of historical fire frequency, severity, spatial variability, and extent, corroborated by other lines of evidence, are essential in addressing these questions. Existing methods can infer the severity of individual fires and stand-level fire regimes. However, novel research designs combining evidence of stand-level fire severity with fire extent are now being used to reconstruct spatial variability in historical fire regimes and to quantify the relative abundance of fire severity classes across landscapes, thereby facilitating comparison with modern fire regimes. Here we review how these new approaches build on traditional analyses of fire scars and forest age structures by presenting four case studies from the western United States and Canada. Collectively they demonstrate the importance of ecosystem-specific research that can guide management aiming to safeguard human, cultural and biological values in fire-prone forests and enhance forest resilience to the cumulative effects of global environmental change. Dendroecological reconstructions, combined with multiple lines of corroborating evidence, are key for achieving this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee JK (1993) Fire ecology of Pacific Northwest forests. Island Press, Washington, DC

    Google Scholar 

  • Agee JK (1998) The landscape ecology of western forest fire regimes. Northwest Sci 72:24–34

    Google Scholar 

  • Amoroso MM, Daniels LD (2010) Cambial mortality in declining Austrocedrus chilensis forests: implications for stand dynamics studies. Can J For Res 40:885–893. doi:10.1139/X10-042

    Article  Google Scholar 

  • Amoroso MM, Daniels LD, Bataneih M et al (2011) Evidence of mixed-severity fires in the foothills of the Rocky Mountains of west-central Alberta, Canada. For Ecol Manag 262:2240–2249. doi:10.1016/j.foreco.2011.08.016

    Article  Google Scholar 

  • Applequist MB (1958) A simple pith locator for use with off-center increment cores. J For 56:141

    Google Scholar 

  • Baker WL, Veblen TT, Sherriff RL (2007) Fire, fuels and restoration of ponderosa pine–Douglas fir forests in the Rocky Mountains, USA. J Biogeogr 34:251–269. doi:10.1111/j.1365-2699.2006.01592.x

    Article  Google Scholar 

  • Bowman DM, Balch JK, Artaxo P et al (2009) Fire in the earth system. Science 324:481–484. doi:10.1126/science.1163886

    Article  CAS  PubMed  Google Scholar 

  • Brown PM, Swetnam TW (1994) A cross-dated fire history from coast redwood near Redwood National Park, California. Can J For Res 24:21–31. doi:10.1139/x94-004

    Article  Google Scholar 

  • Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86:3030–3038. doi:10.1890/05-0034

    Article  Google Scholar 

  • Brown PM, Wienk CL, Symstad AJ (2008) Fire and forest history at Mount Rushmore. Ecol Appl 18:1984–1999. doi:10.1890/07-1337.1

    Article  PubMed  Google Scholar 

  • Busse MD, Riegel GM (2009) Response of antelope bitter brush to repeated prescribed burning in Central Oregon ponderosa pine forests. For Ecol Manag 257:904–910. doi:10.1016/j.foreco.2008.10.026

    Article  Google Scholar 

  • Caprio AC, Swetnam TW (1995) Historic fire regimes along an elevational gradient on the west slope of the Sierra Nevada, California. In: Brown JK, Mutch RW, Spoon CW, Wakimoto RW (tech. coords) Proceedings of the symposium on fire in wilderness and park management: past lessons and future opportunities, Missoula, MT, USA, Mar 30–Apr 1, 1993. USDA Forest Service General Technical Report INT. pp 173–179

    Google Scholar 

  • Chavardès RD, Daniels LD (2016) Altered mixed-severity fire regime has homogenized montane forests of Jasper National Park. Int J Wildland Fire 25:433–444. doi:10.1071/WF15048

    Google Scholar 

  • Cherubini P, Fontana G, Rigling D et al (2002) Tree-life history prior to death: two fungal root pathogens affect tree growth differently. J Ecol 90:839–850. doi:10.1046/j.1365-2745.2002.00715.x

    Article  Google Scholar 

  • Daniels LD, Dobry J, Klinka K et al (1997) Determining year of death of logs and snags of Thuja plicata in southwestern coastal British Columbia. Can J For Res 27:1132–1141

    Article  Google Scholar 

  • Dieterich JH, Swetnam TW (1984) Dendrochronology of a fire scarred ponderosa pine. For Sci 30:238–247

    Google Scholar 

  • Duncan R (1989) An evaluation of errors in tree-age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides). New Zeal. Nat Sci 16:31–37

    Google Scholar 

  • Ehle D, Baker WL (2003) Disturbance and stand dynamics in ponderosa pine forests in Rocky Mountain National Park, USA. Ecol Monogr 73:543–566. doi:10.1890/03-4014

    Article  Google Scholar 

  • Falk DA, Miller C, McKenzie D et al (2007) Cross-scale analysis of fire regimes. Ecosystems 10:809–823. doi:10.1007/s10021-007-9070-7

    Article  Google Scholar 

  • Falk DA, Heyerdahl EK, Brown PM et al (2011) Multiscale controls of historical fire regimes: new insights from fire scar networks. Front Ecol Environ 9:446–454. doi:10.1890/100052

    Article  Google Scholar 

  • Farris CA, Baisan CH, Falk DA et al (2010) Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest. Ecol Appl 20:1598–1614. doi:10.1890/09-1535.1

    Article  PubMed  Google Scholar 

  • Farris CA, Baisan CH, Falk DA et al (2013) A comparison of targeted and systematic fire-scar sampling for estimating historical fire frequency in southwestern ponderosa pine forests. Int J Wildland Fire 22:1021–1033. doi:10.1071/WF13026

    Article  Google Scholar 

  • Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success: conference proceedings, Portland, OR, 28–30 Mar 2006. USDA For. Serv. Proc. RMRS-P-41, Fort Collins, CO, pp 213–220

    Google Scholar 

  • Flannigan MD, Krawchuk MA, deGroot WJ et al (2009) Implication of changing climate for global wildland fire. Int J Wildland Fire 18:483–507. doi:10.1071/WF08187

    Article  Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188. doi:10.1016/S0065-2504(08)60158-0

    Article  Google Scholar 

  • Fulé PZ, Crouse JE, Heinlein TA et al (2003) Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landsc Ecol 18:465–486. doi:10.1023/A:1026012118011

    Article  Google Scholar 

  • Gartner MH, Veblen TT, Sherriff RL et al (2012) Proximity to grasslands influences fire frequency and sensitivity to climate variability in ponderosa pine forests of the Colorado Front Range. Int J Wildland Fire 21:562–571. doi:10.1071/WF10103

    Article  Google Scholar 

  • Geist JM, Cochran PH (1991) Influences of volcanic ash and pumice deposition on productivity of western interior forest soils. In: Harvey AE, Neuenschwander LF (eds) Proceedings: management and productivity of western-montane forest soils, Boise, ID, USA April 1990. USDA Forest Service General Technical Report INT-280. pp 82–89

    Google Scholar 

  • Greene GA, Daniels LD (2017) Spatial interpolation and mean fire interval analyses quantify historical burn metrics in mixed-severity fire regimes. Int J Wildland Fire 26(2):136–147. doi:10.1071/WF16084

    Article  Google Scholar 

  • Hagmann RK, Franklin JF, Johnson KN (2013) Historical structure and composition of ponderosa pine and mixed-conifer forests in south-central Oregon. For Ecol Manag 304:492–504. doi:10.1016/j.foreco.2013.04.005

    Article  Google Scholar 

  • Halofsky JE, Donato DC, Hibbs DE et al (2011) Mixed-severity fire regimes: lessons and hypotheses from the Klamath-Siskiyou Ecoregion. Ecosphere 2:1–19. doi:10.1890/ES10-00184.1

    Article  Google Scholar 

  • Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382. doi:10.1016/0033-5894(73)90003-3

    Article  Google Scholar 

  • Hessburg PF, Salter RB, James KM (2007) Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure. Landsc Ecol 22:5–24. doi:10.1007/s10980-007-9098-2

    Article  Google Scholar 

  • Hessl AE, Miller J, Kernan JT et al (2007) Mapping paleo-fire boundaries from binary point data: comparing interpolation methods. Prof Geogr 59:87–104. doi:10.1111/j.1467-9272.2007.00593.x

    Article  Google Scholar 

  • Heyerdahl EK, Brubaker LB, Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology 82:660–678. doi:10.1890/0012-9658(2001)082[0660:SCOHFR]2.0.CO;2

    Article  Google Scholar 

  • Heyerdahl EK, Lertzman K, Wong CM (2012) Mixed-severity fire regimes in dry forests of southern interior British Columbia, Canada. Can J For Res 42:88–98. doi:10.1139/x11-160

    Article  Google Scholar 

  • Heyerdahl EK, Loehman RA, Falk DA (2014) Mixed-severity fire in lodgepole pine dominated forests: are historical regimes sustainable on Oregon’s Pumice Plateau, USA? Can J For Res 44:593–603. doi:10.1139/cjfr-2013-0413

    Article  Google Scholar 

  • Johnson EA, Gutsell SL (1994) Fire frequency models, methods and interpretations. Adv Ecol Res 25:239–287

    Article  Google Scholar 

  • Johnson EA, Van Wagner CE (1985) The theory and use of two fire history models. Can J For Res 15:214–220. doi:10.1139/x85-039

    Article  Google Scholar 

  • Jones EL, Daniels LD (2012) Assessment of dendrochronological year-of-death estimates using permanent sample plot data. Tree-Ring Res 68:3–16. doi:10.3959/2010-10.1

    Article  Google Scholar 

  • Jonsson B, Holm S, Kallur H (1992) A forest inventory method based on density-adapted circular plot size. Scand J Forest Res 7:405–421. doi:10.1080/02827589209382733

    Article  Google Scholar 

  • Keeley JE, Zedler PH (1998) Evolution of life history in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 219–250

    Google Scholar 

  • Kernan JT, Hessl AE (2010) Spatially heterogeneous estimates of fire frequency in ponderosa pine forests of Washington, USA. Fire Ecol 6:117–135. doi:10.4996/fireecology.0603117

    Article  Google Scholar 

  • Kipfmueller KF, Baker WL (1998) A comparison of three techniques to date stand-replacing fires in lodgepole pine forests. For Ecol Manag 104:171–177. doi:10.1016/S0378-1127(97)00245-4

    Article  Google Scholar 

  • Kitzberger T, Brown PM, Heyerdahl EK et al (2007) Contingent Pacific-Atlantic Ocean influence on multi-century wildfire synchrony over western North America. Proc Natl Acad Sci U S A 104:543–548. doi:10.1073/pnas.0606078104

    Article  CAS  PubMed  Google Scholar 

  • Landres P, Morgan P, Swanson F (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188. doi:10.1890/1051-0761(1999)009[1179:OOTUON]2.0.CO;2

    Google Scholar 

  • Lertzman K, Fall J, Dorner B (1998) Three kinds of heterogeneity in fire regimes: at the crossroads of fire history and landscape ecology. Northwest Sci 72:4–23

    Google Scholar 

  • Marcoux HM, Gergel SG, Daniels LD (2013) Mixed-severity fire regimes: How well are they represented by existing fire-regime classification systems? Can J For Res 43:658−668. doi:10.1139/cjfr-2012-0449

    Article  Google Scholar 

  • Marcoux HM, Daniels LD, Gergel SG et al (2015) Differentiating mixed- and high-severity fire regimes in mixed-conifer forests of the Canadian Cordillera. For Ecol Manag 341:45–58. doi:10.1016/j.foreco.2014.12.027

    Article  Google Scholar 

  • Margolis EQ, Swetnam TW, Allen CD (2007) A stand-replacing fire history in upper montane forests of the southern Rocky Mountains. Can J For Res 37:2227–2241. doi:10.1139/X07-079

    Article  Google Scholar 

  • Margolis EQ, Swetnam TW, Allen CD (2011) Historical stand-replacing fire in upper montane forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA. Fire Ecol 7:88–107. doi:10.4996/fireecology.0703088

    Article  Google Scholar 

  • Mast JN, Veblen TT, Linhart YB (1998) Disturbance and climatic influences on age structure of ponderosa pine at the pine/grassland ecotone, Colorado Front Range. J Biogeogr 25:743–755. doi:10.1046/j.1365-2699.1998.2540743.x

    Article  Google Scholar 

  • McBride JR (1983) Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bull 43:51–67

    Google Scholar 

  • McKenzie D, Gedalof Z, Peterson DL et al (2004) Climatic change, wildfire, and conservation. Conserv Biol 18:890–902. doi:10.1111/j.1523-1739.2004.00492.x

    Article  Google Scholar 

  • Moritz MA, Batllori E, Bradstock RA et al (2014) Learning to coexist with wildfire. Nature 515:58–66. doi:10.1038/nature13946

    Article  CAS  PubMed  Google Scholar 

  • Mowat EL (1960) No serotinous cones on central Oregon lodgepole pine. J Forest 58:118–119

    Google Scholar 

  • Norton DA, Palmer JG, Ogden J (1987) Dendroecological studies in New Zealand, Part 1. An evaluation of tree age estimates based on increment cores. New Zeal J Bot 25:373–383. doi:10.1080/0028825X.1987.10413355

    Article  Google Scholar 

  • O’Connor CD, Falk DA, Lynch AM et al (2014) Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. For Ecol Manag 329:264–278. doi:10.1016/j.foreco.2014.06.032

    Article  Google Scholar 

  • Odion DC, Hanson CT, Arsenault A et al (2014) Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS One 9(2):e87852. doi:10.1371/journal.pone.0087852

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry DA, Hessburg PF, Skinner CN et al (2011) The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. For Ecol Manag 262:703–717. doi:10.1016/j.foreco.2011.05.004

    Article  Google Scholar 

  • Preisler HK, Hicke JA, Ager AA, Hayes JL (2012) Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology 93:2421–2434. doi:10.1890/11-1412.1

    Article  PubMed  Google Scholar 

  • Romme WR (1980) Fire history terminology—report of the ad hoc committee. In: Stokes M, Dietrich JH (eds) Proceedings of the Fire History Workshop; Ft Collins, CO, USA. USDA Forest Service General Technical Report RM-81. pp 135–137

    Google Scholar 

  • Ruha T, Landsberg J, Martin R (1996) Influence of fire on understory shrub vegetation in ponderosa pine stands. In: Barrow JR, McArthur DE, Sosebee RE, Tausch RJ (eds) Proceedings: Shrubland Ecosystem Dynamics in a Changing Environment, Las Cruces, NM, USA, May 1995. USDA Forest Service General Technical Report INT-GTR-338. pp 108–113

    Google Scholar 

  • Schoennagel T, Nelson CR (2011) Restoration relevance of recent National Fire Plan treatments in forests of the western United States. Front Ecol Environ 9:271–277. doi:10.1890/090199

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme W (2004) The interaction of fire, fuels, and climate across Rocky Mountain forests. Bioscience 54:661–676. doi:10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2

    Article  Google Scholar 

  • Schoennagel T, Smithwick EAH, Turner MG (2008) Landscape heterogeneity following large fires: insights from Yellowstone National Park, U.S.A. Int J Wildland Fire 17:742–753. doi:10.1071/WF07146

    Article  Google Scholar 

  • Schoennagel TL, Sherriff RL, Veblen TT (2011) Fire history and tree recruitment in the Colorado Front Range upper montane zone: implications for forest restoration. Ecol Appl 21:2210–2222. doi:10.1890/10-1222.1

    Article  PubMed  Google Scholar 

  • Sherriff RL, Veblen TT (2006) Ecological effects of changes in fire regimes in Pinus ponderosa ecosystems in the Colorado Front Range. J Veg Sci 17:705–718. doi:10.1111/j.1654-1103.2006.tb02494.x

    Google Scholar 

  • Sherriff RL, Veblen TT (2007) A spatially-explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado Front Range. Ecosystems 10:311–323. doi:10.1007/s10021-007-9022-2

    Article  Google Scholar 

  • Sherriff RL, Platt RV, Veblen TT et al (2014) Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range. PLoS One 9:e106791. doi:10.1371/journal.pone.0106971

    Article  Google Scholar 

  • Sibold JS, Veblen TT, Gonzalez ME (2006) Spatial and temporal variation in historic fire regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park, Colorado, USA. J Biogeogr 33:631–647. doi:10.1111/j.1365-2699.2005.01404.x

    Article  Google Scholar 

  • Simpson M (2007) Forested plant associations of the Oregon East Cascades. USDA Forest Service, Pacific Northwest Region, Technical Paper R6-NR-ECOL-TP-032007

    Google Scholar 

  • Smith KT, Sutherland EK (2001) Terminology and biology of fire scars in selected central hardwoods. Tree-Ring Bull 57:141–147

    Google Scholar 

  • Smith KT, Arbellay E, Falk DA et al (2016) Macroanatomy and compartmentalization of recent fire scars in three North American conifers. Can J For Res 46:535–542. doi:10.1139/cjfr-2015-0377

    Article  Google Scholar 

  • Stephens SL, Fulé PZ (2005) Western pine forests with continuing frequent fire regimes: possible reference sites for management. J For 103:357–362

    Google Scholar 

  • Stephens SL, Agee JK, Fulé PZ et al (2013) Managing forests and fire in changing climates. Science 342:41–42. doi:10.1126/science.1240294

    Article  CAS  PubMed  Google Scholar 

  • Stretch V, Gedalof Z, Cockburn J et al (2016) Sensitivity of reconstructed fire histories to detection criteria in mixed-severity landscapes. For Ecol Manag 379:61–69. doi:10.1016/j.foreco.2016.08.009

    Article  Google Scholar 

  • Swetnam T, Baisan C (1996) Historical fire regime patterns in the southwestern United States since AD 1700. In: Allen CD (ed) Fire effects in Southwestern forests: Proceedings of the 2nd La Mesa Fire Symposium. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RM-GTR-286. pp 11–32

    Google Scholar 

  • Swetnam T, Allen C, Betancourt J (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi:10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2

    Article  Google Scholar 

  • Swetnam TL, Falk DA, Hessl AE et al (2011) Reconstructing landscape pattern of historical fires and fire regimes. In: McKenzie D, Miller C, Falk DA (eds) The landscape ecology of fire. Springer Publishing, New York, pp 165–192

    Chapter  Google Scholar 

  • Taylor AH, Skinner CN (2003) Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol Appl 13:704–719. doi:10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2

    Article  Google Scholar 

  • Tepley AL, Veblen TT (2015) Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA. Ecol Monogr 85:583–603. doi:10.1890/14-1496.1

    Article  Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849. doi:10.1890/10-0097.1

    Article  PubMed  Google Scholar 

  • Van Horne ML, Fulé PZ (2006) Comparing methods of reconstructing fire history using fire scars in a southwestern United States ponderosa pine forest. Can J For Res 36:855–867. doi:10.1139/x05-289

    Article  Google Scholar 

  • Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Can J For Res 8:220–227. doi:10.1139/x78-034

    Article  Google Scholar 

  • Vankat JL (2011) Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 1—ponderosa pine forest. For Ecol Manag 261:309–325. doi:10.1016/j.foreco.2010.05.026

    Article  Google Scholar 

  • Veblen TT, Lorenz DC (1986) Anthropogenic disturbance and recovery patterns in montane forests, Colorado Front Range. Phys Geogr 7:1–24. doi:10.1080/02723646.1986.10642278

    Google Scholar 

  • Veblen TT, Lorenz DC (1991) The Colorado Front Range: a century of ecological change. University of Utah Press, Salt Lake City

    Google Scholar 

  • Veblen TT, Kitzberger T, Donnegan J (2000) Climatic and human influence on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol Appl 10:1178–1195. doi:10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997) Improving estimates of total tree ages based on increment core samples. Ecoscience 4:534–542. doi:10.1080/11956860.1997.11682433

    Article  Google Scholar 

  • Williams MA, Baker WL (2012) Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests. Glob Ecol Biogeogr 21:1042–1052. doi:10.1111/j.1466-8238.2011.00750.x

    Article  Google Scholar 

  • Wong CM, Lertzman KP (2001) Error in estimating tree age: implications for studies of stand dynamics. Can J For Res 31:1262–1271. doi:10.1139/x01-060

    Article  Google Scholar 

  • Yocom Kent LL (2014) An evaluation of fire regime reconstruction methods. ERI Working Paper No. 32. Ecological Restoration Institute and Southwest Fire Science Consortium, Northern Arizona University, Flagstaff, AZ. 15 p

    Google Scholar 

  • Yocom Kent LL, Fulé PZ, Bunn WA et al (2015) Historical high-severity fire patches in mixed-conifer forests. Can J For Res 45:1587–1596. doi:10.1139/cjfr-2015-0128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori D. Daniels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniels, L.D., Yocom Kent, L.L., Sherriff, R.L., Heyerdahl, E.K. (2017). Deciphering the Complexity of Historical Fire Regimes: Diversity Among Forests of Western North America. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (eds) Dendroecology. Ecological Studies, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-61669-8_8

Download citation

Publish with us

Policies and ethics