Skip to main content

Machine Perfusion of Organs

  • Chapter
  • First Online:
Technological Advances in Organ Transplantation

Abstract

Transplant organ supplies are insufficient to meet the demands, resulting in prolonged patient wait times and waitlist mortality. Offering improved organ preservation, assessment, and resuscitation, machine perfusion of organs can enable the use of marginal organs, thereby expanding the donor pool. The technology is based on the common principle of continuous provision of oxygen and nutrients. Perfusion settings and components vary widely in terms of pump pulsatility, temperature control, oxygen provision, oncotic agents, and pharmacologic supplementation. While this technology was first pioneered in the 1960s, it has seen a recent resurgence. Hypothermic renal perfusion is the most clinically advanced area of perfusion and a source of continued innovation. Liver, heart, and lung perfusion techniques have been introduced into the clinical realm as safe alternatives, and evidence demonstrating clinical efficacy and superiority is accumulating. Machine perfusion of the pancreas and small intestine is being explored predominantly in preclinical models. Machine perfusion of limbs offers improved opportunities for limb transplantation and autologous replantation. Machine perfusion is a promising option to salvage function in marginal organ grafts and may enable prediction of organ function or dysfunction after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abouna, G. M. (2008). Organ shortage crisis: Problems and possible solutions. Transplantation Proceedings, 40, 34–38.

    Article  PubMed  CAS  Google Scholar 

  2. Abu-Elmagd, K., Reyes, J., Todo, S., et al. (1998). Clinical intestinal transplantation: New perspectives and immunologic considerations. Journal of the American College of Surgeons, 186, 512–527.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Arai, K., Hotokebuchi, T., Miyahara, H., et al. (1993). Successful long-term storage of rat limbs. The use of simple immersion in Euro-Collins solution. International Orthopaedics, 17, 389–396.

    Article  PubMed  CAS  Google Scholar 

  4. Ardehali, A., Esmailian, F., Deng, M., et al. (2015). Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet, 385, 2577–2584.

    Article  PubMed  Google Scholar 

  5. Arthur, P. G., Niu, X.-W., Huang, W.-H., et al. (2013). Desferrioxamine in warm reperfusion media decreases liver injury aggravated by cold storage. World Journal of Gastroenterology, 19, 673–681.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Babkin, B. P., & Starling, E. H. (1926). A method for the study of the perfused pancreas. The Journal of Physiology, 61, 245–247.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Barlow, A. D., Hosgood, S. A., & Nicholson, M. L. (2013). Current state of pancreas preservation and implications for DCD pancreas transplantation. Transplant Journal, 95, 1419–1424.

    Article  Google Scholar 

  8. Baumgartner, D., Sutherland, D. E., & Najarian, J. S. (1980). Studies on segmental pancreas autotransplants in dogs: Technique and preservation. Transplantation Proceedings, 12, 163–171.

    PubMed  CAS  Google Scholar 

  9. Beecher, H. K., Adams, R. D., Barger, C., et al. (1968). A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA, 205, 337–340.

    Article  Google Scholar 

  10. Bell, R. M., Mocanu, M. M., & Yellon, D. M. (2011). Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. Journal of Molecular and Cellular Cardiology, 50, 940–950.

    Article  PubMed  CAS  Google Scholar 

  11. Bellomo, R., Suzuki, S., Marino, B., et al. (2012). Normothermic extracorporeal perfusion of isolated porcine liver after warm ischaemia: A preliminary report. Critical Care and Resuscitation, 14, 173–176.

    PubMed  Google Scholar 

  12. Belzer, F. O. (1991). Organ preservation: A personal perspective. In P. I. Terasaki (Ed.), History of transplantation: Thirty-five recollections (pp. 595–613). Los Angeles: UCLA Tissue Typing Laboratory.

    Google Scholar 

  13. Belzer, F. O., Ashby, B. S., & Dunphy, J. E. (1967). 24-hour and 72-hour preservation of canine kidneys. Lancet (London, England), 2, 536–538.

    Article  CAS  Google Scholar 

  14. Belzer, F. O., Ashby, B. S., Gulyassy, P. F., & Powell, M. (1968a). Successful seventeen-hour preservation and transplantation of human-cadaver kidney. The New England Journal of Medicine, 278, 608–610.

    Article  PubMed  CAS  Google Scholar 

  15. Belzer, F. O., Ashby, B. S., Huang, J. S., & Dunphy, J. E. (1968b). Etiology of rising perfusion pressure in isolated organ perfusion. Annals of Surgery, 168, 382–391.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Belzer, F. O., D’Alessandro, A. M., Hoffmann, R. M., et al. (1992). The use of UW solution in clinical transplantation. A 4-year experience. Annals of Surgery, 215, 579–585.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Belzer, F. O., Glass, N. R., Sollinger, H. W., et al. (1982). A new perfusate for kidney preservation. Transplantation, 33, 322–323.

    PubMed  CAS  Google Scholar 

  18. Benumof, J. L., & Wahrenbrock, E. A. (1977). Dependency of hypoxic pulmonary vasoconstriction on temperature. Journal of Applied Physiology, 42, 56–58.

    Article  PubMed  CAS  Google Scholar 

  19. Bessems, M., Doorschodt, B. M., Kolkert, J. L. P., et al. (2007). Preservation of steatotic livers: A comparison between cold storage and machine perfusion preservation. Liver Transplantation, 13, 497–504.

    Article  PubMed  Google Scholar 

  20. Bessems, M., Doorschodt, B. M., van Vliet, A. K., & van Gulik, T. M. (2005). Improved rat liver preservation by hypothermic continuous machine perfusion using polysol, a new, enriched preservation solution. Liver Transplantation, 11, 539–546.

    Article  PubMed  Google Scholar 

  21. Bhangoo, R. S., Hall, I. E., Reese, P. P., & Parikh, C. R. (2012). Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: A systematic review. Nephrology, Dialysis, Transplantation, 27, 3305–3314.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Blaisdell, F. W. (2002). The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: A review. Cardiovascular Surgery, 10, 620–630.

    Article  PubMed  Google Scholar 

  23. Boehnert, M. U., Yeung, J. C., Bazerbachi, F., et al. (2013). Normothermic acellular ex vivo liver perfusion reduces liver and bile duct injury of pig livers retrieved after cardiac death. American Journal of Transplantation, 13, 1441–1449.

    Article  PubMed  CAS  Google Scholar 

  24. Brasile, L., Buelow, R., Stubenitsky, B. M., & Kootstra, G. (2003a). Induction of heme oxygenase-1 in kidneys during ex vivo warm perfusion. Transplantation, 76, 1145–1149.

    Article  PubMed  CAS  Google Scholar 

  25. Brasile, L., Glowacki, P., Castracane, J., & Stubenitsky, B. M. (2010). Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation, 90, 1294–1298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Brasile, L., Green, E., & Haisch, C. (1997). Oxygen consumption in warm-preserved renal allografts. Transplantation Proceedings, 29, 1322–1323.

    Article  PubMed  CAS  Google Scholar 

  27. Brasile, L., Stubenitsky, B., Haisch, C. E., et al. (2005). Potential of repairing ischemically damaged kidneys ex vivo. Transplantation Proceedings, 37, 375–376.

    Article  PubMed  CAS  Google Scholar 

  28. Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2001). Hypothermia--a limiting factor in using warm ischemically damaged kidneys. American Journal of Transplantation, 1, 316–320.

    Article  PubMed  CAS  Google Scholar 

  29. Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2002a). Transfection and transgene expression in a human kidney during ex vivo warm perfusion. Transplantation Proceedings, 34, 2624.

    Article  PubMed  CAS  Google Scholar 

  30. Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2002b). Overcoming severe renal ischemia: The role of ex vivo warm perfusion. Transplantation, 73, 897–901.

    Article  PubMed  Google Scholar 

  31. Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2003b). NOS: The underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. American Journal of Transplantation, 3, 674–679.

    Article  PubMed  CAS  Google Scholar 

  32. Braun, F., Schütz, E., Laabs, S., et al. (1998). Development of a porcine small bowel ex vivo perfusion model. Transplantation Proceedings, 30, 2613–2615.

    Article  PubMed  CAS  Google Scholar 

  33. Bravo, D., Rigley, T. H., Gibran, N., et al. (2000). Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns, 26, 367–378.

    Article  PubMed  CAS  Google Scholar 

  34. Brockmann, J., Reddy, S., Coussios, C., et al. (2009). Normothermic perfusion: A new paradigm for organ preservation. Annals of Surgery, 250, 1–6.

    Article  PubMed  Google Scholar 

  35. Bruinsma, B. G., Yeh, H., Ozer, S., et al. (2014). Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. American Journal of Transplantation, 14, 1400–1409.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Brynger, H., & Claes, G. (1975). Behaviour of the duct-ligated canine pancreas during hypothermic albumin perfusion. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 7, 287–296.

    CAS  Google Scholar 

  37. Butler, A. J., Rees, M. A., Wight, D. G. D., et al. (2002). Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation, 73, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  38. Candinas, D., Largiadèr, F., Binswanger, U., et al. (1996). A novel dextran 40-based preservation solution. Transplant International, 9, 32–37.

    Article  PubMed  CAS  Google Scholar 

  39. Cannon, R. M., Brock, G. N., Garrison, R. N., et al. (2013). To pump or not to pump: A comparison of machine perfusion vs cold storage for deceased donor kidney transplantation. Journal of the American College of Surgeons, 216, 625–633.

    Article  PubMed  Google Scholar 

  40. Changani, K. K., Fuller, B. J., Bryant, D. J., et al. (1997). Non-invasive assessment of ATP regeneration potential of the preserved donor liver. A 31P MRS study in pig liver. Journal of Hepatology, 26, 336–342.

    Article  PubMed  CAS  Google Scholar 

  41. Cho, Y. W., Terasaki, P. I., Cecka, J. M., & Gjertson, D. W. (1998). Transplantation of kidneys from donors whose hearts have stopped beating. The New England Journal of Medicine, 338, 221–225.

    Article  PubMed  CAS  Google Scholar 

  42. Claes, G., Aurell, M., Blohmé, I., & Pettersson, S. (1972). Experimental and clinical results of continuous hypothermic albumin perfusion. Proceedings of the European Dialysis and Transplant Association, 9, 484–490.

    PubMed  CAS  Google Scholar 

  43. Collins, G. M., Bravo-Shugarman, M., & Terasaki, P. I. (1969). Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet, 2, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  44. Colvin-Adams, M., Smith, J. M., Heubner, B. M., et al. (2015). OPTN/SRTR 2013 annual data report: Heart. American Journal of Transplantation, 15(Suppl 2), 1–28.

    Article  PubMed  Google Scholar 

  45. Constantinescu, M. A., Knall, E., Xu, X., et al. (2011). Preservation of amputated extremities by extracorporeal blood perfusion; a feasibility study in a porcine model. The Journal of Surgical Research, 171, 291–299.

    Article  PubMed  Google Scholar 

  46. Cypel, M., Liu, M., Rubacha, M., et al. (2009a). Functional repair of human donor lungs by IL-10 gene therapy. Science Translational Medicine, 1, 4ra9.

    Article  PubMed  CAS  Google Scholar 

  47. Cypel, M., Rubacha, M., Yeung, J., et al. (2009b). Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. American Journal of Transplantation, 9, 2262–2269.

    Article  PubMed  CAS  Google Scholar 

  48. Cypel, M., Yeung, J. C., Hirayama, S., et al. (2008). Technique for prolonged normothermic ex vivo lung perfusion. The Journal of Heart and Lung Transplantation, 27, 1319–1325.

    Article  PubMed  Google Scholar 

  49. Cypel, M., Yeung, J. C., Liu, M., et al. (2011). Normothermic ex vivo lung perfusion in clinical lung transplantation. The New England Journal of Medicine, 364, 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  50. Cypel, M., Yeung, J. C., Machuca, T., et al. (2012). Experience with the first 50 ex vivo lung perfusions in clinical transplantation. The Journal of Thoracic and Cardiovascular Surgery, 144, 1200–1206.

    Article  PubMed  Google Scholar 

  51. de Groot, H., & Rauen, U. (2007). Ischemia-reperfusion injury: Processes in pathogenetic networks: A review. Transplantation Proceedings, 39, 481–484.

    Article  PubMed  CAS  Google Scholar 

  52. de Rougemont, O., Breitenstein, S., Leskosek, B., et al. (2009). One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Annals of Surgery, 250, 674–683.

    Article  PubMed  Google Scholar 

  53. de Vries, E. E., Hoogland, E. R. P., Winkens, B., et al. (2011). Renovascular resistance of machine-perfused DCD kidneys is associated with primary nonfunction. American Journal of Transplantation, 11, 2685–2691.

    Article  PubMed  Google Scholar 

  54. DeCampos, K. N., Keshavjee, S., Slutsky, A. S., & Liu, M. (1999). Alveolar recruitment prevents rapid-reperfusion-induced injury of lung transplants. The Journal of Heart and Lung Transplantation, 18, 1096–1102.

    Article  PubMed  CAS  Google Scholar 

  55. Delorme, T. L., Shaw, R. S., & Austen, W. G. (1964). A method of studying “normal” function in the amputated human limb using perfusion. The Journal of Bone and Joint Surgery, 46, 161–164.

    Article  PubMed  CAS  Google Scholar 

  56. Demacker, P. N. M., Beijers, A. M., van Daal, H., et al. (2009). Plasma citrulline measurement using UPLC tandem mass-spectrometry to determine small intestinal enterocyte pathology. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 387–392.

    Article  PubMed  CAS  Google Scholar 

  57. Desai, T. R., Sisley, A. C., Brown, S., & Gewertz, B. L. (1996). Defining the critical limit of oxygen extraction in the human small intestine. Journal of Vascular Surgery, 23, 832–838.

    Article  PubMed  CAS  Google Scholar 

  58. Dhital, K. K., Iyer, A., Connellan, M., et al. (2015). Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: A case series. Lancet, 385, 2585–2591.

    Article  PubMed  Google Scholar 

  59. Domingo-Pech, J., Garriga, J. M., Toran, N., et al. (1991). Preservation of the amputated canine hind limb by extracorporeal perfusion. International Orthopaedics, 15, 289–291.

    Article  PubMed  CAS  Google Scholar 

  60. Durand, F., Renz, J. F., Alkofer, B., et al. (2008). Report of the Paris consensus meeting on expanded criteria donors in liver transplantation. Liver Transplantation, 14, 1694–1707.

    Article  PubMed  Google Scholar 

  61. Dutkowski, P., Furrer, K., Tian, Y., et al. (2006). Novel short-term hypothermic oxygenated perfusion (HOPE) system prevents injury in rat liver graft from non-heart beating donor. Annals of Surgery, 244, 968–976.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Dutkowski, P., Polak, W. G., Muiesan, P., et al. (2015). First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: An international-matched case analysis. Annals of Surgery, 262, 764–771.

    Article  PubMed  Google Scholar 

  63. Dutkowski, P., Schlegel, A., de Oliveira, M., et al. (2014). HOPE for human liver grafts obtained from donors after cardiac death. Journal of Hepatology, 60, 765–772.

    Article  PubMed  Google Scholar 

  64. Eckhauser, F., Knol, J. A., Porter-Fink, V., et al. (1981). Ex vivo normothermic hemoperfusion of the canine pancreas: Applications and limitations of a modified experimental preparation. The Journal of Surgical Research, 31, 22–37.

    Article  PubMed  CAS  Google Scholar 

  65. Eloy, M. R., Kachelhoffer, J., Pousse, A., et al. (1974). Ex vivo vascular perfusion of the isolated canine pancreas. Experimental procedure, haemodynamic data and experimental applications. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 6, 341–353.

    CAS  Google Scholar 

  66. Erasmus, M. E., Fernhout, M. H., Elstrodt, J. M., & Rakhorst, G. (2006). Normothermic ex vivo lung perfusion of non-heart-beating donor lungs in pigs: From pretransplant function analysis towards a 6-h machine preservation. Transplant International, 19, 589–593.

    Article  PubMed  Google Scholar 

  67. Feng, L., Zhao, N., Yao, X., et al. (2007). Histidine-tryptophan-ketoglutarate solution vs. University of Wisconsin solution for liver transplantation: A systematic review. Liver Transplantation, 13, 1125–1136.

    Article  PubMed  Google Scholar 

  68. Ferrigno, A., Rizzo, V., Boncompagni, E., et al. (2011). Machine perfusion at 20°C reduces preservation damage to livers from non-heart beating donors. Cryobiology, 62, 152–158.

    Article  PubMed  CAS  Google Scholar 

  69. Fitton, T. P., Barreiro, C. J., Bonde, P. N., et al. (2005). Attenuation of DNA damage in canine hearts preserved by continuous hypothermic perfusion. The Annals of Thoracic Surgery, 80, 1812–1820.

    Article  PubMed  Google Scholar 

  70. Florack, G., Sutherland, D. E., Heil, J., et al. (1983). Preservation of canine segmental pancreatic autografts: Cold storage versus pulsatile machine perfusion. The Journal of Surgical Research, 34, 493–504.

    Article  PubMed  CAS  Google Scholar 

  71. Fontes, P., Lopez, R., van der Plaats, A., et al. (2015). Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. American Journal of Transplantation, 15, 381–394.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Fujinaga, T., Nakamura, T., Fukuse, T., et al. (2006). Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation, 82, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  73. Fukuse, T., Albes, J. M., Takahashi, Y., et al. (1995). Influence of red blood cells on lung function in an ex vivo rat heart-lung model. The Journal of Surgical Research, 59, 399–404.

    Article  PubMed  CAS  Google Scholar 

  74. Fuller, B. J., & Lee, C. Y. (2007). Hypothermic perfusion preservation: The future of organ preservation revisited? Cryobiology, 54, 129–145.

    Article  PubMed  CAS  Google Scholar 

  75. Gage, F., Leeser, D. B., Porterfield, N. K., et al. (2009). Room temperature pulsatile perfusion of renal allografts with Lifor compared with hypothermic machine pump solution. Transplantation Proceedings, 41, 3571–3574.

    Article  PubMed  CAS  Google Scholar 

  76. Gallinat, A., Efferz, P., Paul, A., & Minor, T. (2014). One or 4 h of “in-house” reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys. Transplant International, 27, 1214–1219.

    Article  PubMed  CAS  Google Scholar 

  77. Gallinat, A., Moers, C., Smits, J. M., et al. (2013). Machine perfusion versus static cold storage in expanded criteria donor kidney transplantation: 3-year follow-up data. Transplant International, 26, E52–E53.

    Article  PubMed  Google Scholar 

  78. Gallinat, A., Moers, C., Treckmann, J., et al. (2012a). Machine perfusion versus cold storage for the preservation of kidneys from donors ≥ 65 years allocated in the Eurotransplant Senior Programme. Nephrology, Dialysis, Transplantation, 27, 4458–4463.

    Article  PubMed  Google Scholar 

  79. Gallinat, A., Paul, A., Efferz, P., et al. (2012b). Role of oxygenation in hypothermic machine perfusion of kidneys from heart beating donors. Transplantation, 94, 809–813.

    Article  PubMed  CAS  Google Scholar 

  80. Gallinat, A., Paul, A., Efferz, P., et al. (2012c). Hypothermic reconditioning of porcine kidney grafts by short-term preimplantation machine perfusion. Transplantation, 93, 787–793.

    Article  PubMed  CAS  Google Scholar 

  81. Ginzel, K. H. (1960). A method for measurement of peristaltic activity and for perfusion of the vascular system and lumen of an isolated loop of small intestine in the guinea pig. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 238, 231–232.

    PubMed  CAS  Google Scholar 

  82. Gordon, L., Levinsohn, D. G., Borowsky, C. D., et al. (1992). Improved preservation of skeletal muscle in amputated limbs using pulsatile hypothermic perfusion with University of Wisconsin solution. A preliminary study. The Journal of Bone and Joint Surgery American, 74, 1358–1366.

    Article  CAS  Google Scholar 

  83. Greaney, P. J., Cordisco, M., Rodriguez, D., et al. (2010). Use of an extracorporeal membrane oxygenation circuit as a bridge to salvage a major upper-extremity replant in a critically ill patient. Journal of Reconstructive Microsurgery, 26, 517–522.

    Article  PubMed  Google Scholar 

  84. Gringeri, E., Bonsignore, P., Bassi, D., et al. (2012). Subnormothermic machine perfusion for non-heart-beating donor liver grafts preservation in a Swine model: A new strategy to increase the donor pool? Transplantation Proceedings, 44, 2026–2028.

    Article  PubMed  CAS  Google Scholar 

  85. Groen, H., Moers, C., Smits, J. M., et al. (2012). Cost-effectiveness of hypothermic machine preservation versus static cold storage in renal transplantation. American Journal of Transplantation, 12, 1824–1830.

    Article  PubMed  CAS  Google Scholar 

  86. Gruessner, A. C. (2011). 2011 update on pancreas transplantation: Comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the international pancreas transplant registry (IPTR). The Review of Diabetic Studies, 8, 6–16.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Grundmann, R., Raab, M., Meusel, E., et al. (1975). Analysis of the optimal perfusion pressure and flow rate of the renal vascular resistance and oxygen consumption in the hypothermic perfused kidney. Surgery, 77, 451–461.

    PubMed  CAS  Google Scholar 

  88. Guarrera, J. V., Henry, S. D., Samstein, B., et al. (2015). Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. American Journal of Transplantation, 15, 161–169.

    Article  PubMed  CAS  Google Scholar 

  89. Guarrera, J. V., Henry, S. D., Samstein, B., et al. (2010). Hypothermic machine preservation in human liver transplantation: The first clinical series. American Journal of Transplantation, 10, 372–381.

    Article  PubMed  CAS  Google Scholar 

  90. Guibert, E. E., Petrenko, A. Y., Balaban, C. L., et al. (2011). Organ preservation: Current concepts and new strategies for the next decade. Transfusion Medicine and Hemotherapy, 38, 125–142.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Hamilton, D. (2013). Kidney transplantation: A history. In P. Morris & S. J. Knechtle (Eds.), Kidney transplantation: Principles and practice (7th ed., pp. 1–9). Oxford: Saunders.

    Google Scholar 

  92. Hassanein, W. H., Zellos, L., Tyrrell, T. A., et al. (1998). Continuous perfusion of donor hearts in the beating state extends preservation time and improves recovery of function. The Journal of Thoracic and Cardiovascular Surgery, 116, 821–830.

    Article  PubMed  CAS  Google Scholar 

  93. Henry, S. D., Nachber, E., Tulipan, J., et al. (2012). Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. American Journal of Transplantation, 12, 2477–2486.

    Article  PubMed  CAS  Google Scholar 

  94. Hicks, T. E., Boswick, J. A., & Solomons, C. C. (1980). The effects of perfusion on an amputated extremity. The Journal of Trauma, 20, 632–648.

    Article  PubMed  CAS  Google Scholar 

  95. Hoffmann, R. M., Southard, J. H., Lutz, M., et al. (1983). Synthetic perfusate for kidney preservation. Its use in 72-hour preservation of dog kidneys. Archives of Surgery, 118, 919–921.

    Article  PubMed  CAS  Google Scholar 

  96. Hohenleitner, F. J., & Senior, J. R. (1969). Metabolism of canine small intestine vascularly perfused in vitro. Journal of Applied Physiology, 26, 119–128.

    Article  PubMed  CAS  Google Scholar 

  97. Hoogland, E. R. P., de Vries, E. E., Christiaans, M. H. L., et al. (2013). The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation, 95, 603–610.

    Article  PubMed  CAS  Google Scholar 

  98. Hosgood, S. A., Bagul, A., Kaushik, M., et al. (2008a). Application of nitric oxide and carbon monoxide in a model of renal preservation. The British Journal of Surgery, 95, 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  99. Hosgood, S. A., Bagul, A., Yang, B., & Nicholson, M. L. (2008b). The relative effects of warm and cold ischemic injury in an experimental model of nonheartbeating donor kidneys. Transplantation, 85, 88–92.

    Article  PubMed  Google Scholar 

  100. Hoyer, D. P., Gallinat, A., Swoboda, S., et al. (2014a). Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transplant International, 27, 1097–1106.

    Article  PubMed  Google Scholar 

  101. Hoyer, D. P., Gallinat, A., Swoboda, S., et al. (2014b). Influence of oxygen concentration during hypothermic machine perfusion on porcine kidneys from donation after circulatory death. Transplantation, 98, 944–950.

    Article  PubMed  CAS  Google Scholar 

  102. Huang, H., He, Z., Roberts, L. J., & Salahudeen, A. K. (2003). Deferoxamine reduces cold-ischemic renal injury in a syngeneic kidney transplant model. American Journal of Transplantation, 3, 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  103. Humphries, A. L., Russell, R., Gregory, J., et al. (1964). Hypothermic perfusion of the canine kidney for 48 hours followed by Reimplantation. The American Surgeon, 30, 748–752.

    PubMed  Google Scholar 

  104. Humphries, A. L., Russell, R., Stoddard, L. D., & Moretz, W. H. (1968). Three-day kidney preservation: Perfusion of kidneys with hypothermic, diluted blood of plasma. Surgery, 63, 646–652.

    PubMed  Google Scholar 

  105. Ingemansson, R., Eyjolfsson, A., Mared, L., et al. (2009). Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. The Annals of Thoracic Surgery, 87, 255–260.

    Article  PubMed  Google Scholar 

  106. Inoue, H., Inoue, C., & Hildebrandt, J. (1982). Temperature effects on lung mechanics in air- and liquid-filled rabbit lungs. Journal of Applied Physiology, 53, 567–575.

    Article  PubMed  CAS  Google Scholar 

  107. Jamieson, R. W., Zilvetti, M., Roy, D., et al. (2011). Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation, 92, 289–295.

    Article  PubMed  Google Scholar 

  108. Jiao, B., Liu, S., Liu, H., et al. (2013). Hypothermic machine perfusion reduces delayed graft function and improves one-year graft survival of kidneys from expanded criteria donors: A meta-analysis. PloS One, 8, e81826.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Jochmans, I., Moers, C., Ploeg, R., & Pirenne, J. (2011a). To perfuse or not to perfuse kidneys donated after cardiac death. American Journal of Transplantation, 11, 409–410.

    Article  PubMed  CAS  Google Scholar 

  110. Jochmans, I., Moers, C., Smits, J. M., et al. (2011b). The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. American Journal of Transplantation, 11, 2214–2220.

    Article  PubMed  CAS  Google Scholar 

  111. Jochmans, I., Moers, C., Smits, J. M., et al. (2010). Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: A multicenter, randomized, controlled trial. Annals of Surgery, 252, 756–764.

    Article  PubMed  Google Scholar 

  112. Jochmans, I., O’Callaghan, J. M., Pirenne, J., & Ploeg, R. J. (2015). Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transplant international, 28(6), 665–676.

    Article  PubMed  Google Scholar 

  113. Kachelhoffer, J., Dauchel, J., Pousse, A., et al. (1976). A simple device to obtain a pulsatile flow. Application to the vascular perfusion of dogs isolated intestinal segments. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 8, 461–470.

    CAS  Google Scholar 

  114. Kandaswamy, R., Skeans, M. A., Gustafson, S. K., et al. (2016). Pancreas. American Journal of Transplantation, 16(Suppl 2), 47–68.

    Article  PubMed  Google Scholar 

  115. Karangwa, S. A., Dutkowski, P., Fontes, P., et al. (2016). Machine perfusion of donor livers for transplantation: A proposal for standardized nomenclature and reporting guidelines. American Journal of Transplantation, 16(10), 2932–2942.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Karcz, M., Cook, H. T., Sibbons, P., et al. (2010). An ex-vivo model for hypothermic pulsatile perfusion of porcine pancreata: Hemodynamic and morphologic characteristics. Experimental and Clinical Transplantation, 8, 55–60.

    PubMed  Google Scholar 

  117. Kaths, J. M., Spetzler, V. N., Goldaracena, N., et al. (2015). Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation. Journal of Visualized Experiments, 15(101), e52909.

    Google Scholar 

  118. Khush, K. K., Zaroff, J. G., Nguyen, J., et al. (2015). National decline in donor heart utilization with regional variability: 1995-2010. American Journal of Transplantation, 15, 642–649.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Kim, W. R., Lake, J. R., Smith, J. M., et al. (2016). Liver. American Journal of Transplantation, 16(Suppl 2), 69–98.

    Article  PubMed  Google Scholar 

  120. Klein, A. S., Messersmith, E. E., Ratner, L. E., et al. (2010). Organ donation and utilization in the United States, 1999-2008. American Journal of Transplantation, 10, 973–986.

    Article  PubMed  CAS  Google Scholar 

  121. Knaak, J. M., Spetzler, V. N., Goldaracena, N., et al. (2014). Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation. Liver Transplantation, 20, 1296–1305.

    Article  PubMed  Google Scholar 

  122. Kosieradzki, M., & Rowiński, W. (2008). Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention. Transplantation Proceedings, 40, 3279–3288.

    Article  PubMed  CAS  Google Scholar 

  123. Kwiatkowski, A., Wszoła, M., Kosieradzki, M., et al. (2009). The early and long term function and survival of kidney allografts stored before transplantation by hypothermic pulsatile perfusion. A prospective randomized study. Annals of Transplantation, 14, 14–17.

    PubMed  Google Scholar 

  124. Lam, V. W. T., Laurence, J. M., Richardson, A. J., et al. (2013). Hypothermic machine perfusion in deceased donor kidney transplantation: A systematic review. The Journal of Surgical Research, 180, 176–182.

    Article  PubMed  Google Scholar 

  125. Lauschke, H., Olschewski, P., Tolba, R., et al. (2003). Oxygenated machine perfusion mitigates surface antigen expression and improves preservation of predamaged donor livers. Cryobiology, 46, 53–60.

    Article  PubMed  Google Scholar 

  126. Lee, C. Y., & Mangino, M. J. (2009). Preservation methods for kidney and liver. Organogenesis, 5, 105–112.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Lee, J. W., Fang, X., Gupta, N., et al. (2009). Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 106, 16357–16362.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Leeser, D. B., Bingaman, A. W., Poliakova, L., et al. (2004). Pulsatile pump perfusion of pancreata before human islet cell isolation. Transplantation Proceedings, 36, 1050–1051.

    Article  PubMed  CAS  Google Scholar 

  129. Lindell, S. L., Compagnon, P., Mangino, M. J., & Southard, J. H. (2005). UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation, 79, 1358–1361.

    Article  PubMed  Google Scholar 

  130. Lindell, S. L., Muir, H., Brassil, J., & Mangino, M. J. (2013). Hypothermic machine perfusion preservation of the DCD kidney: Machine effects. Journal of Transplantation, 2013, 802618.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Linder, A., Friedel, G., Fritz, P., et al. (1996). The ex-vivo isolated, perfused human lung model: Description and potential applications. The Thoracic and Cardiovascular Surgeon, 44, 140–146.

    Article  PubMed  CAS  Google Scholar 

  132. Liu, Q., Berendsen, T., Izamis, M.-L., et al. (2013a). Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplantation Proceedings, 45, 3209–3213.

    Article  PubMed  CAS  Google Scholar 

  133. Liu, Q., Izamis, M.-L., Xu, H., et al. (2013b). Strategies to rescue steatotic livers before transplantation in clinical and experimental studies. World Journal of Gastroenterology, 19, 4638–4650.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Liu, Q., Nassar, A., Farias, K., et al. (2015). Comparing normothermic machine perfusion preservation with different perfusates on porcine livers from donors after circulatory death. American Journal of Transplantation, 16, 794-807.

    Article  PubMed  Google Scholar 

  135. Liu, Q., Nassar, A., Farias, K., et al. (2014a). Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transplantation, 20, 987–999.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Liu, Q., Vekemans, K., Iania, L., et al. (2014b). Assessing warm ischemic injury of pig livers at hypothermic machine perfusion. The Journal of Surgical Research, 186, 379–389.

    Article  PubMed  CAS  Google Scholar 

  137. Liu, Q., Vekemans, K., van Pelt, J., et al. (2009). Discriminate liver warm ischemic injury during hypothermic machine perfusion by proton magnetic resonance spectroscopy: A study in a porcine model. Transplantation Proceedings, 41, 3383–3386.

    Article  PubMed  CAS  Google Scholar 

  138. Lockett, C. J., Fuller, B. J., Busza, A. L., & Proctor, E. (1995). Hypothermic perfusion preservation of liver: The role of phosphate in stimulating ATP synthesis studied by 31P NMR. Transplant International, 8, 440–445.

    Article  PubMed  CAS  Google Scholar 

  139. Malt, R., & McKhann, C. (1964). Replantation of severed arms. JAMA, 189, 716–722.

    Article  PubMed  CAS  Google Scholar 

  140. Mangino, M. (2011). Hypothermic machine perfusion of kidneys. In K. Uygun & C. Y. Lee (Eds.), Methods in bioengineering: Organ preservation and reengineering (pp. 35–57). Boston: Artech House.

    Google Scholar 

  141. Mangus, R. S., Fridell, J. A., Vianna, R. M., et al. (2008). Comparison of histidine-tryptophan-ketoglutarate solution and University of Wisconsin solution in extended criteria liver donors. Liver Transplantation, 14, 365–373.

    Article  PubMed  Google Scholar 

  142. Matas, A. J., Smith, J. M., Skeans, M. A., et al. (2015). OPTN/SRTR 2013 Annual data report: Kidney. American Journal of Transplantation, 15(Suppl 2), 1–34.

    Article  PubMed  Google Scholar 

  143. Mehl, R., Paul, H., Shorey, W., et al. (1964). Patency of the microcirculation in the traumatically amputated limb--a comparison of common perfusates. The Journal of Trauma, 4, 495–505.

    Article  PubMed  CAS  Google Scholar 

  144. Mercer, D. F., Vargas, L., Sun, Y., et al. (2011). Stool calprotectin monitoring after small intestine transplantation. Transplantation, 91, 1166–1171.

    Article  PubMed  CAS  Google Scholar 

  145. Meyer, W., Castelfranchi, P. L., Schulz, L. S., et al. (1973). Physiologic studies during perfusion of the isolated canine pancreas. The endocrine and exocrine behavior. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 5, 105–115.

    CAS  Google Scholar 

  146. Minor, T., Manekeller, S., Sioutis, M., & Dombrowski, F. (2006). Endoplasmic and vascular surface activation during organ preservation: Refining upon the benefits of machine perfusion. American Journal of Transplantation, 6, 1355–1366.

    Article  PubMed  CAS  Google Scholar 

  147. Miyazaki, K., Sunada, K., Iseki, K., & Arita, T. (1986). Simultaneous vascular and luminal perfusion of rat small intestine. Chemical & Pharmaceutical Bulletin (Tokyo), 34, 3830–3835.

    Article  CAS  Google Scholar 

  148. Modry, D. L., Jirsch, D. W., Boehme, G., et al. (1973). Hypothermic perfusion preservation of the isolated dog lung. The Annals of Thoracic Surgery, 16, 583–597.

    Article  PubMed  CAS  Google Scholar 

  149. Moers, C., Pirenne, J., Paul, A., & Ploeg, R. J. (2012). Machine perfusion or cold storage in deceased-donor kidney transplantation. The New England Journal of Medicine, 366, 770–771.

    Article  PubMed  CAS  Google Scholar 

  150. Moers, M., Smits, J.M., Maathuis, M.J., et al. (2009). Machine Perfusion or Cold Storage in Deceased-Donor Kidney Transplantation. The  New England Journal of Medicine, 360, 7–19.

    Google Scholar 

  151. Moers, C., Varnav, O. C., van Heurn, E., et al. (2010). The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation, 90, 966–973.

    Article  PubMed  Google Scholar 

  152. Monbaliu, D., Liu, Q., Vekemans, K., & Pirenne, J. (2009). History of organ perfusion in organ transplantation. In D. Talbot & A. M. D’Alessandro (Eds.), Organ donation and transplantation after cardiac death (pp. 31–49). New York: Oxford University Press.

    Chapter  Google Scholar 

  153. Monbaliu, D., Pirenne, J., & Talbot, D. (2012). Liver transplantation using donation after cardiac death donors. Journal of Hepatology, 56, 474–485.

    Article  PubMed  Google Scholar 

  154. Moustafellos, P., Hadjianastassiou, V., Roy, D., et al. (2007). The influence of pulsatile preservation in kidney transplantation from non-heart-beating donors. Transplantation Proceedings, 39, 1323–1325.

    Article  PubMed  CAS  Google Scholar 

  155. Mozes, M. F., Skolek, R. B., & Korf, B. C. (2005). Use of perfusion parameters in predicting outcomes of machine-preserved kidneys. Transplantation Proceedings, 37, 350–351.

    Article  PubMed  CAS  Google Scholar 

  156. Müller, S., Constantinescu, M. A., Kiermeir, D. M., et al. (2013). Ischemia/reperfusion injury of porcine limbs after extracorporeal perfusion. The Journal of Surgical Research, 181, 170–182.

    Article  PubMed  Google Scholar 

  157. Muñoz-Abraham, A. S., Patrón-Lozano, R., Narayan, R. R., et al. (2015). Extracorporeal hypothermic perfusion device for intestinal graft preservation to decrease ischemic injury during transportation. Journal of Gastrointestinal Surgery, 20, 313–21.

    Article  Google Scholar 

  158. Muthusamy, A. S. R., Mumford, L., Hudson, A., et al. (2012). Pancreas transplantation from donors after circulatory death from the United Kingdom. American Journal of Transplantation, 12, 2150–2156.

    Article  PubMed  CAS  Google Scholar 

  159. Nagrath, D., Xu, H., Tanimura, Y., et al. (2009). Metabolic preconditioning of donor organs: Defatting fatty livers by normothermic perfusion ex vivo. Metabolic Engineering, 11, 274–283.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Nakajima, D., Chen, F., Yamada, T., et al. (2011). Hypothermic machine perfusion ameliorates ischemia-reperfusion injury in rat lungs from non-heart-beating donors. Transplantation, 92, 858–863.

    Article  PubMed  Google Scholar 

  161. Nassar, A., Liu, Q., Farias, K., et al. (2014). Role of vasodilation during normothermic machine perfusion of DCD porcine livers. The International Journal of Artificial Organs, 37, 165–172.

    Article  PubMed  CAS  Google Scholar 

  162. Nassar, A., Liu, Q., Farias, K., et al. (2016). Impact of temperature on porcine liver machine perfusion from donors after cardiac death. Artificial Organs, 40, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  163. Nicholson, M. L., & Hosgood, S. A. (2013). Renal transplantation after ex vivo normothermic perfusion: The first clinical study. American Journal of Transplantation, 13, 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  164. Niemeier, R. W. (1984). The isolated perfused lung. Environmental Health Perspectives, 56, 35–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  165. Norden, M. A., Rao, V. K., & Southard, J. H. (1997). Improved preservation of rat hindlimbs with the University of Wisconsin solution and butanedione monoxime. Plastic and Reconstructive Surgery, 100, 957–965.

    Article  PubMed  CAS  Google Scholar 

  166. Nyrén, O., Blank, M. A., & Jaffe, B. M. (1992). Evaluation of a rat model for the study of local regulation of intestinal blood flow: Ex vivo asanguineous perfusion of the ileal vascular bed. The Journal of Surgical Research, 53, 455–463.

    Article  PubMed  Google Scholar 

  167. O’Callaghan, J., Leuvenink, H. G. D., Friend, P. J., & Ploeg, R. J. (2013a). Kidney preservation. In P. Morris & S. J. Knechtle (Eds.), Kidney transplantation: Principles and practice (7th ed., pp. 130–141). New York: Saunders.

    Google Scholar 

  168. O’Callaghan, J. M., Morgan, R. D., Knight, S. R., & Morris, P. J. (2013b). Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. The British Journal of Surgery, 100, 991–1001.

    Article  PubMed  Google Scholar 

  169. O’Donovan, M. J., Rowlerson, A., & Taylor, A. (1976). Proceedings: Contraction characteristics and histochemistry of motor units studied in perfused human limb muscles. The Journal of Physiology, 257, 24P–25P.

    PubMed  Google Scholar 

  170. O’Malley, V. P., Keyes, D. M., & Postier, R. G. (1986). The fluosol-perfused isolated canine pancreas: A model for the study of blood component effects in acute pancreatitis. The Journal of Surgical Research, 40, 210–215.

    Article  PubMed  Google Scholar 

  171. Okada, N., Mizuta, K., Oshima, M., et al. (2015). A novel split liver protocol using the subnormothermic oxygenated circuit system in a porcine model of a marginal donor procedure. Transplantation Proceedings, 47, 419–426.

    Article  PubMed  CAS  Google Scholar 

  172. Okamoto, T., Wheeler, D., Liu, Q., et al. (2016). Correlation between PaO2/FiO2 and airway and vascular parameters in the assessment of cellular ex vivo lung perfusion system. The Journal of Heart and Lung Transplantation, 35(11), 1330–1336.

    Article  PubMed  Google Scholar 

  173. Okamoto, T., Wheeler, D., Liu, Q., et al. (2015). Variability in pressure of arterial oxygen to fractional inspired oxygen concentration ratio during cellular ex vivo lung perfusion: Implication for decision making. Transplantation, 99, 2504–2513.

    Article  PubMed  CAS  Google Scholar 

  174. Olschewski, P., Gass, P., Ariyakhagorn, V., et al. (2010). The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology, 60, 337–343.

    Article  PubMed  Google Scholar 

  175. Oltean, M., & Olausson, M. (2010). The Chiu/park scale for grading intestinal ischemia-reperfusion: If it ain’t broke don't fix it! Intensive Care Medicine, 36, 1095. author reply 1096.

    Article  PubMed  Google Scholar 

  176. op den Dries, S., Karimian, N., Sutton, M. E., et al. (2013). Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. American Journal of Transplantation, 13, 1327–1335.

    Article  CAS  Google Scholar 

  177. Op den Dries, S., Sutton, M. E., Karimian, N., et al. (2014). Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death. PloS One, 9, e88521.

    Article  CAS  Google Scholar 

  178. Opelz, G., & Terasaki, P. I. (1982). Advantage of cold storage over machine perfusion for preservation of cadaver kidneys. Transplantation, 33, 64–68.

    Article  PubMed  CAS  Google Scholar 

  179. Ozer, K., Rojas-Pena, A., Mendias, C. L., et al. (2015). Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in Swine. Transplantation, 99, 2095–2101.

    Article  PubMed  Google Scholar 

  180. Ozer, K., Rojas-Pena, A., Mendias, C. L., et al. (2016). The effect of ex situ perfusion in a Swine limb vascularized composite tissue allograft on survival up to 24 hours. Journal of Hand Surgery American, 41, 3–12.

    Article  Google Scholar 

  181. Parrish, D., Lindell, S. L., Reichstetter, H., et al. (2015). Cell Impermeant-based low-volume resuscitation in hemorrhagic shock: A biological basis for injury involving cell swelling. Annals of Surgery, 263, 565–572.

    Article  Google Scholar 

  182. Pascual, J., Zamora, J., & Pirsch, J. D. (2008). A systematic review of kidney transplantation from expanded criteria donors. American Journal of Kidney Diseases, 52, 553–586.

    Article  PubMed  Google Scholar 

  183. Patel, S. K., Pankewycz, O. G., Nader, N. D., et al. (2012). Prognostic utility of hypothermic machine perfusion in deceased donor renal transplantation. Transplantation Proceedings, 44, 2207–2212.

    Article  PubMed  CAS  Google Scholar 

  184. Pegg, D. E., & Green, C. J. (1976). Renal preservation by hypothermic perfusion. III. The lack of influence of pulsatile flow. Cryobiology, 13, 161–167.

    Article  PubMed  CAS  Google Scholar 

  185. Ploeg, R. J., Goossens, D., McAnulty, J. F., et al. (1988). Successful 72-hour cold storage of dog kidneys with UW solution. Transplantation, 46, 191–196.

    Article  PubMed  CAS  Google Scholar 

  186. Poitras, P., Trudel, L., Miller, P., & Gu, C. M. (1997). Regulation of motilin release: Studies with ex vivo perfused canine jejunum. The American Journal of Physiology, 272, G4–G9.

    PubMed  CAS  Google Scholar 

  187. Polyak, M. M., Arrington, B. O., Stubenbord, W. T., et al. (2000). The influence of pulsatile preservation on renal transplantation in the 1990s. Transplantation, 69, 249–258.

    Article  PubMed  CAS  Google Scholar 

  188. Ravikumar, R., Jassem, W., Mergental, H., et al. (2016). Liver transplantation after ex vivo normothermic machine preservation: A phase 1 (first-in-man) clinical trial. American Journal of Transplantation, 16(6), 1779–1787.

    Article  PubMed  CAS  Google Scholar 

  189. Reznik, O. N., Bagnenko, S. F., Loginov, I. V., et al. (2008). Machine perfusion as a tool to select kidneys recovered from uncontrolled donors after cardiac death. Transplantation Proceedings, 40, 1023–1026.

    Article  PubMed  CAS  Google Scholar 

  190. Rijkmans, B. G., Buurman, W. A., & Kootstra, G. (1984). Six-day canine kidney preservation. Hypothermic perfusion combined with isolated blood perfusion. Transplantation, 37, 130–134.

    Article  PubMed  CAS  Google Scholar 

  191. Rogers, J. W., Sellers, E. A., & Gornall, A. G. (1947). Intestinal perfusion in the treatment of uremia. Science, 106, 108.

    Article  PubMed  CAS  Google Scholar 

  192. Rosen, H. M., Slivjak, M. J., & McBrearty, F. X. (1987). The role of perfusion washout in limb revascularization procedures. Plastic and Reconstructive Surgery, 80, 595–605.

    Article  PubMed  CAS  Google Scholar 

  193. Ruiz, J. O., Schultz, L. S., Hendrickx, J., et al. (1971). Isolated intestinal perfusion: A method for assessing preservation methods and viability before transplantation. Transactions American Society for Artificial Internal Organs, 17, 42–48.

    PubMed  CAS  Google Scholar 

  194. Russo, M. J., Chen, J. M., Sorabella, R. A., et al. (2007). The effect of ischemic time on survival after heart transplantation varies by donor age: An analysis of the United Network for Organ Sharing database. The Journal of Thoracic and Cardiovascular Surgery, 133, 554–559.

    Article  PubMed  Google Scholar 

  195. Sanchez, P. G., Davis, R. D., D’Ovidio, F., et al. (2014). The NOVEL lung trial one-year outcomes. The Journal of Heart and Lung Transplantation, 33, S71–S72.

    Article  Google Scholar 

  196. Schlegel, A., Kron, P., Graf, R., et al. (2014). Warm vs. cold perfusion techniques to rescue rodent liver grafts. Journal of Hepatology, 61, 1267–1275.

    Article  PubMed  Google Scholar 

  197. Schneeberger, S., Biebl, M., Steurer, W., et al. (2009). A prospective randomized multicenter trial comparing histidine-tryptophan-ketoglutarate versus University of Wisconsin perfusion solution in clinical pancreas transplantation. Transplant International, 22, 217–224.

    Article  PubMed  Google Scholar 

  198. Schold, J. D., Kaplan, B., Howard, R. J., et al. (2005). Are we frozen in time? Analysis of the utilization and efficacy of pulsatile perfusion in renal transplantation. American Journal of Transplantation, 5, 1681–1688.

    Article  PubMed  Google Scholar 

  199. Schön, M. R., Kollmar, O., Wolf, S., et al. (2001). Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Annals of Surgery, 233, 114–123.

    Article  PubMed Central  PubMed  Google Scholar 

  200. Seal, J. B., & Gewertz, B. L. (2005). Vascular dysfunction in ischemia-reperfusion injury. Annals of Vascular Surgery, 19, 572–584.

    Article  PubMed  Google Scholar 

  201. Sgourakis, G., Papapanagiotou, A., Kontovounisios, C., et al. (2013). The value of plasma neurotensin and cytokine measurement for the detection of bowel ischaemia in clinically doubtful cases: A prospective study. Experimental Biology and Medicine (Maywood, N.J.), 238, 874–880.

    Article  CAS  Google Scholar 

  202. Shepherd, A. P., & Riedel, G. L. (1982). Effect of pulsatile pressure and metabolic rate on intestinal autoregulation. The American Journal of Physiology, 242, H769–H775.

    PubMed  CAS  Google Scholar 

  203. Skrzypiec-Spring, M., Grotthus, B., Szelag, A., & Schulz, R. (2007). Isolated heart perfusion according to Langendorff – still viable in the new millennium. Journal of Pharmacological and Toxicological Methods, 55, 113–126.

    Article  PubMed  CAS  Google Scholar 

  204. Southard, J. H., van Gulik, T. M., Ametani, M. S., et al. (1990). Important components of the UW solution. Transplantation, 49, 251–257.

    Article  PubMed  CAS  Google Scholar 

  205. Stangl, M. J., Krapp, J., Theodorou, D., et al. (2000). Computer-assisted ex vivo, normothermic small bowel perfusion. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 32, 100–106.

    CAS  Google Scholar 

  206. Starzl, T. E., Groth, C. G., Brettschneider, L., et al. (1968). Orthotopic homotransplantation of the human liver. Annals of Surgery, 168, 392–415.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  207. Steen, S., Ingemansson, R., Eriksson, L., et al. (2007). First human transplantation of a nonacceptable donor lung after reconditioning ex vivo. The Annals of Thoracic Surgery, 83, 2191–2194.

    Article  PubMed  Google Scholar 

  208. Steen, S., Liao, Q., Wierup, P. N., et al. (2003). Transplantation of lungs from non-heart-beating donors after functional assessment ex vivo. The Annals of Thoracic Surgery, 76, 244–252.

    Article  PubMed  Google Scholar 

  209. Steen, S., Sjöberg, T., Pierre, L., et al. (2001). Transplantation of lungs from a non-heart-beating donor. Lancet, 357, 825–829.

    Article  PubMed  CAS  Google Scholar 

  210. Stevanovic, M., & Sharpe, F. (2014). Functional free muscle transfer for upper extremity reconstruction. Plastic and Reconstructive Surgery, 134, 257e–274e.

    Article  PubMed  CAS  Google Scholar 

  211. Straznicka, M., Follette, D. M., Eisner, M. D., et al. (2002). Aggressive management of lung donors classified as unacceptable: Excellent recipient survival one year after transplantation. The Journal of Thoracic and Cardiovascular Surgery, 124, 250–258.

    Article  PubMed  Google Scholar 

  212. Sudan, D., Vargas, L., Sun, Y., et al. (2007). Calprotectin: A novel noninvasive marker for intestinal allograft monitoring. Annals of Surgery, 246, 311–315.

    Article  PubMed Central  PubMed  Google Scholar 

  213. Sutton, M. E., op den Dries, S., Karimian, N., et al. (2014). Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PloS One, 9, e110642.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  214. Taylor, M. J., Baicu, S., Leman, B., et al. (2008). Twenty-four hour hypothermic machine perfusion preservation of porcine pancreas facilitates processing for islet isolation. Transplantation Proceedings, 40, 480–482.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  215. Taylor, M. J., & Baicu, S. C. (2010). Current state of hypothermic machine perfusion preservation of organs: The clinical perspective. Cryobiology, 60, S20–S35.

    Article  PubMed  Google Scholar 

  216. Tersigni, R., Toledo-Pereyra, L. H., Pinkham, J., & Najarian, J. S. (1975). Pancreaticoduodenal preservation by hypothermic pulsatile perfusion for twenty-four hours. Annals of Surgery, 182, 743–748.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  217. Thuillier, R., Allain, G., Celhay, O., et al. (2013). Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. The Journal of Surgical Research, 184, 1174–1181.

    Article  PubMed  Google Scholar 

  218. Tolboom, H., Izamis, M.-L., Sharma, N., et al. (2012). Subnormothermic machine perfusion at both 20°C and 30°C recovers ischemic rat livers for successful transplantation. The Journal of Surgical Research, 175, 149–156.

    Article  PubMed  Google Scholar 

  219. Toledo-Pereyra, L. H., Condie, R. M., Malmberg, R., et al. (1974). A fibrinogen-free plasma perfusate for preservation of kidneys for one hundred and twenty hours. Surgery, Gynecology & Obstetrics, 138, 901–905.

    CAS  Google Scholar 

  220. Treckmann, J., Moers, C., Smits, J. M., et al. (2011). Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transplant International, 24, 548–554.

    Article  PubMed  Google Scholar 

  221. Uematsu, T., Asano, T., Enomoto, K., et al. (1987). Predictable viability assay of isolated canine liver using hypothermic continuous machine perfusion. Transplantation Proceedings, 19, 1321–1323.

    PubMed  CAS  Google Scholar 

  222. Usui, M., Sakata, H., & Ishii, S. (1985). Effect of fluorocarbon perfusion upon the preservation of amputated limbs. An experimental study. Journal of Bone and Joint Surgery British, 67, 473–477.

    Article  CAS  Google Scholar 

  223. Vairetti, M., Ferrigno, A., Carlucci, F., et al. (2009). Subnormothermic machine perfusion protects steatotic livers against preservation injury: A potential for donor pool increase? Liver Transplantation, 15, 20–29.

    Article  PubMed  Google Scholar 

  224. Vairetti, M., Ferrigno, A., Rizzo, V., et al. (2008). Correlation between the liver temperature employed during machine perfusion and reperfusion damage: Role of Ca2+. Liver Transplantation, 14, 494–503.

    Article  PubMed  Google Scholar 

  225. Valapour, M., Paulson, K., Smith, J. M., et al. (2013). OPTN/SRTR 2011 annual data report: Lung. American Journal of Transplantation, 13(Suppl 1), 149–177.

    Article  PubMed  Google Scholar 

  226. Valapour, M., Skeans, M. A., Heubner, B. M., et al. (2015). OPTN/SRTR 2013 annual data report: Lung. American Journal of Transplantation, 15(Suppl 2), 1–28.

    Article  PubMed  Google Scholar 

  227. Van Raemdonck, D., Neyrinck, A., Rega, F., et al. (2013). Machine perfusion in organ transplantation: A tool for ex-vivo graft conditioning with mesenchymal stem cells? Current Opinion in Organ Transplantation, 18, 24–33.

    Article  PubMed  CAS  Google Scholar 

  228. Vercaemst, L. (2008). Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: A review in search of a treatment algorithm. The Journal of Extra-Corporeal Technology, 40, 257–267.

    PubMed Central  PubMed  Google Scholar 

  229. Vogel, T., Brockmann, J. G., Coussios, C., & Friend, P. J. (2012). The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplantation Reviews (Orlando, Fla.), 26, 156–162.

    Article  Google Scholar 

  230. Wagner, S. M., Nogueira, A. C., Paul, M., et al. (2003). The isolated normothermic hemoperfused porcine forelimb as a test system for transdermal absorption studies. Journal of Artificial Organs, 6, 183–191.

    Article  PubMed  CAS  Google Scholar 

  231. Wallinder, A., Ricksten, S.-E., Hansson, C., et al. (2012). Transplantation of initially rejected donor lungs after ex vivo lung perfusion. The Journal of Thoracic and Cardiovascular Surgery, 144, 1222–1228.

    Article  PubMed  Google Scholar 

  232. Warnecke, G., Moradiellos, J., Tudorache, I., et al. (2012). Normothermic perfusion of donor lungs for preservation and assessment with the organ care system lung before bilateral transplantation: A pilot study of 12 patients. Lancet, 380, 1851–1858.

    Article  PubMed  Google Scholar 

  233. Watson, C. J. E., Kosmoliaptsis, V., Randle, L. V., et al. (2016). Preimplant normothermic liver perfusion of a suboptimal liver donated after circulatory death. American Journal of Transplantation, 16, 353–357.

    Article  PubMed  CAS  Google Scholar 

  234. Watson, C. J. E., Wells, A. C., Roberts, R. J., et al. (2010). Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: A UK multicenter randomized controlled trial. American Journal of Transplantation, 10, 1991–1999.

    Article  PubMed  CAS  Google Scholar 

  235. Westbroek, D. L., De Gruyl, J., Dijkhuis, C. M., et al. (1974). Twenty-four-hour hypothermic preservation perfusion and storage of the duct-ligated canine pancreas with transplantation. Transplantation Proceedings, 6, 319–322.

    PubMed  CAS  Google Scholar 

  236. Wicomb, W. N., Cooper, D. K., Novitzky, D., & Barnard, C. N. (1984). Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. The Annals of Thoracic Surgery, 37, 243–248.

    Article  PubMed  CAS  Google Scholar 

  237. Wierup, P., Haraldsson, A., Nilsson, F., et al. (2006). Ex vivo evaluation of nonacceptable donor lungs. The Annals of Thoracic Surgery, 81, 460–466.

    Article  PubMed  Google Scholar 

  238. Wight, J., Chilcott, J., Holmes, M., & Brewer, N. (2003a). The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors. Health Technology Assessment, 7, 1–94.

    Article  PubMed  CAS  Google Scholar 

  239. Wight, J. P., Chilcott, J. B., Holmes, M. W., & Brewer, N. (2003b). Pulsatile machine perfusion vs. cold storage of kidneys for transplantation: A rapid and systematic review. Clinical Transplantation, 17, 293–307.

    Article  PubMed  Google Scholar 

  240. Wilson, C. (2009). Perfusate development for the NHBD. In D. Talbot & A. M. D’Alessandro (Eds.), Organ donation and transplantation after cardiac death (pp. 67–102). New York: Oxford University Press.

    Chapter  Google Scholar 

  241. Wright, F. H., Wright, C., Ames, S. A., et al. (1990). Pancreatic allograft thrombosis: Donor and retrieval factors and early postperfusion graft function. Transplantation Proceedings, 22, 439–441.

    PubMed  CAS  Google Scholar 

  242. Xu, H., Berendsen, T., Kim, K., et al. (2012). Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. The Journal of Surgical Research, 173, e83–e88.

    Article  PubMed  Google Scholar 

  243. Yeung, J. C., Cypel, M., Machuca, T. N., et al. (2012). Physiologic assessment of the ex vivo donor lung for transplantation. The Journal of Heart and Lung Transplantation, 31, 1120–1126.

    Article  PubMed  Google Scholar 

  244. Young, J. B., Naftel, D. C., Bourge, R. C., et al. (1994). Matching the heart donor and heart transplant recipient. Clues for successful expansion of the donor pool: A multivariable, multiinstitutional report. The cardiac transplant research database group. The Journal of Heart and Lung Transplantation, 13, 353–365.

    PubMed  CAS  Google Scholar 

  245. Zhu, J. Z. J., Castillo, E. G., Salehi, P., et al. (2003). A novel technique of hypothermic luminal perfusion for small bowel preservation. Transplantation, 76, 71–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Quintini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, M.F. et al. (2017). Machine Perfusion of Organs. In: Nadig, S., Wertheim, J. (eds) Technological Advances in Organ Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-62142-5_2

Download citation

Publish with us

Policies and ethics