Skip to main content

A Hybrid Evolutionary Approach for Solving the Traveling Thief Problem

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Included in the following conference series:

Abstract

In this paper, we are interested in a recent variant of the Traveling Salesman Problem (TSP) in which the Knapsack Problem (KP) is integrated. In the literature, this problem is called Traveling Thief Problem (TTP). Interested by the inherent computational challenge of the new problem, we investigate a hybrid evolutionary approach for solving the TTP. In order to evaluate the efficiency of the proposed approach, we carried out some numerical experiments on benchmark instances. The results show the efficiency of the introduced method in solving medium sized instances. In particular, the algorithm improves some best known solutions of the literature. In the case of large instances, our approach gives competitive results that need to be improved in order to obtain better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TSP Test Data, see comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html.

  2. 2.

    Wagner et al. have done their computational experiments on an Xeon 2.66 GHz quad core CPU and ran each algorithm for 10 min [21].

  3. 3.

    Solutions available at comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html.

References

  1. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4(4), 361–394 (1996)

    Article  Google Scholar 

  2. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1037–1044 (2013)

    Google Scholar 

  3. Bonyadi, M.R., Michalewicz, Z., Przybyoek, M.R., Wierzbicki, A.: Socially inspired algorithms for the travelling thief problem. In: GECCO 2014, pp. 421–428 (2014)

    Google Scholar 

  4. Chand, S., Wagner, M.: Fast heuristics for the multiple traveling thieves problem In: GECCO 2016, pp. 293–300 (2016)

    Google Scholar 

  5. El Yafrani, M., Ahiod, B.: Population-based vs. single-solution heuristics for the travelling thief problem. In: GECCO 2016, pp. 317–324 (2016)

    Google Scholar 

  6. Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches to the traveling thief problem. In: GECCO 2015, pp. 385–392 (2015)

    Google Scholar 

  7. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Springer, New York (2009)

    MATH  Google Scholar 

  8. Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  9. Goeke, D., Moeini, M., Poganiuch, D.: A variable neighborhood search heuristic for the maximum ratio clique problem. Comput. Oper. Res. 1–9 (2017, forthcoming). doi:10.1016/j.cor.2017.01.010

  10. Gupta, B.C., Prakash, V.P.: Greedy heuristics for the travelling thief problem. In: 39th National Systems Conference (NSC), pp. 1–5 (2015)

    Google Scholar 

  11. Gueye, S., Michel, S., Moeini, M.: Adjacency variables formulation for the minimum linear arrangement problem. In: Pinson, E., Valente, F., Vitoriano, B. (eds.) ICORES 2014. CCIS, vol. 509, pp. 95–107. Springer, Cham (2015). doi:10.1007/978-3-319-17509-6_7

    Google Scholar 

  12. Mei, Y., Li, X., Yao, X.: Improving efficiency of heuristics for the large scale traveling thief problem. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 631–643. Springer, Cham (2014). doi:10.1007/978-3-319-13563-2_53

    Google Scholar 

  13. Mei, Y., Li, X., Salim, F., Yao, X.: Heuristic evolution with genetic programming for traveling thief problem. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2753–2760 (2015)

    Google Scholar 

  14. Mei, Y., Li, X., Yao, X.: On investigation of interdependence between sub-problems of the travelling thief problem. Soft. Comput. 20(1), 157–172 (2016)

    Article  Google Scholar 

  15. Lourenço, N., Pereira, F.B., Costa, E.: An evolutionary approach to the full optimization of the traveling thief problem. In: EvoCOP, pp. 34–45 (2016)

    Google Scholar 

  16. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: GECCO 2014, pp. 477–484 (2014)

    Google Scholar 

  17. Polyakovskiy, S., Neumann, F.: Packing while traveling: mixed integer programming for a class of nonlinear knapsack problems. In: CPAIOR, pp. 332–346 (2015)

    Google Scholar 

  18. Polyakovskiy, S., Neumann, F.: The packing while traveling problem. Eur. J. Oper. Res. 258, 424–439 (2017)

    Article  MathSciNet  Google Scholar 

  19. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 4(3), 376–384 (1991)

    Article  MATH  Google Scholar 

  20. Wagner, M.: Stealing items more efficiently with ants: a swarm intelligence approach to the travelling thief problem. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 273–281. Springer, Cham (2016). doi:10.1007/978-3-319-44427-7_25

    Chapter  Google Scholar 

  21. Wagner, M., Lindauer, M., Misir, M., Nallaperuma, S., Hutter, F.: A case study of algorithm selection for the traveling thief problem. arXiv:1609.00462v1, pp. 1–23 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Moeini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moeini, M., Schermer, D., Wendt, O. (2017). A Hybrid Evolutionary Approach for Solving the Traveling Thief Problem. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics