Skip to main content

Summarization-Guided Greedy Optimization of Machine Learning Model

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10358))

  • 3809 Accesses

Abstract

Immense amounts of unstructured data account for up to 90% of all human generated data, yet the attempts to extract significant value from it with Machine Learning (ML) and Big Data (BD) technologies yield limited successes. We propose a generic approach to deep data summarization and subsequent automated ML design optimization to extract maximum predictive value from big data. Knowledge summarization is a central component of the proposed methodology and we argue that coupled with strictly linear modeling complexity, hierarchical decomposition and optimized model design may define a backbone of the new platform for automated and scalable construction of robust ML models. We consider ML build process as data journeys through the layers of modeling that consistently follow the same patterns of data summarization and transformation at the subsequent layers of abstraction. In such framework we argue that the robust construction of the ML model can be achieved through hierarchical greedy optimization of the links between connected ML model components. We demonstrate several case studies of deep data summarization and automated ML model design on text, numerical time series and images data. We point out that application awareness allows to deepen data summarizations while maintaining or improving its predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, P., McLaughlin, J., Levy, M., Data, B.: A big disappointment for scoring consumer credit risk. NCLC report (2014)

    Google Scholar 

  2. Sicular, S.: Big Data is Falling into the Through of Disillusionment. Gartner Blog Network (2013)

    Google Scholar 

  3. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning. MIT Press, Cambridge (2015)

    MATH  Google Scholar 

  4. Schmidhuber, J.: Deep learning in neural networks: an overview. Nural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  5. Zhang, Z., Huang, Z., Zhang, Z.: Knowledge summarization for scalable semantic data processing. J. Comput. Inf. Syst. 6(12), 3893–3902 (2010)

    Google Scholar 

  6. Changsheng, X., Maddage, M.C., Xi, S.: Automatic music classification and summarization. IEEE Trans. Speech Audio 13(3), 441–450 (2004)

    Article  Google Scholar 

  7. Ekin, A., Tekalp, A.M.: Automatic soccer video analysis and summarization. IEEE Trans. Image Process. 12(7), 796–807 (2003)

    Article  Google Scholar 

  8. Hori, C., Furui, S.: A new approch to automatic speech summarization. IEEE Trans. Multimedia 5(3), 368–378 (2003)

    Article  Google Scholar 

  9. Yang, C., Junsong, Y., Jiebo, L.: Towards scalable summarization of consumer videos via sparse dictionary selection. IEEE Trans. Multimedia 14(1), 66–75 (2012)

    Article  Google Scholar 

  10. Chandola, V., Kumar, V.: Summarization - compressing data into an informative representation. In: Proceedings 5th IEEE International Conference on Data Mining, New Orleans (2005)

    Google Scholar 

  11. Hahn, U., Mani, I.: The challenges of automatic summarization. Computer 33(11), 29–36 (2000)

    Article  Google Scholar 

  12. Bishop, C.M.: Model-based machine learning. Philos. Trans. R. Soc. A (2013)

    Google Scholar 

  13. Langley, P.: Artificial intelligence and cognitive systems. AISB Q. 133, 1–4 (2012)

    Google Scholar 

  14. Goldstein, J., Kantrowitz, M., Mittal, V., Carbonell, J.: Summarizing text documents: sentence selection and evaluation metrices. In: Proceedings 22nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 121–128 (1999)

    Google Scholar 

  15. Steinberger, J., Jezek, K.: Evaluation measures for text summarization. Comput. Inf. 28, 1001–1026 (2009)

    MATH  Google Scholar 

  16. d’Acierno, A., Moscato, V., Persia, F., Picariello, A., Penta, A.: Semantic summarization of web documents. In: Proceedings IEEE 4th International Conference on Semantic Computingng, pp: 430–435 (2010)

    Google Scholar 

  17. Verma, R., Chen, P., Lu, W.: A semantic free-text summarization system using ontology knowledge. IEEE Trans. Inf. Technol. Biomed. 5(4), 261–270 (2007)

    Google Scholar 

  18. Li, T., Zhu, S., Ogihara, M.: Hierarchical document classification using automatically generated hierarchy. J. Intell. Inf. Syst. 29(2), 211–230 (2007)

    Article  Google Scholar 

  19. Vohra, S.M., Teraiya, J.B.: A comparative study of sentiment analysis techniques. J. Inf. Knowl. Res. Comput. Eng. 2(2), 313–317 (2013)

    Google Scholar 

  20. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 19(23), 2507–2517 (2007)

    Article  Google Scholar 

  21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  22. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  23. Pan, F., Wang, W., Tung, K.H., Yang, J.: Finding Representative Set from Massive Data. Springer, New York (2006)

    Google Scholar 

  24. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  25. Roth, V.: Outlier detection with one-class kernel fisher discriminant. Adv. Neural Inf. Process. Syst. 17, 1169–1176 (2004)

    Google Scholar 

  26. Mitra, P.: Density-based multiscale data condensation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 734–747 (2002)

    Article  Google Scholar 

  27. Yang, P., Li, J.-S., Huang, Y.-X.: HDD: a hypercube division-based algorithm for discretisation. Int. J. Sys. Sci. 42(4), 557–566 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)

    Article  Google Scholar 

  29. Zhou, X., Wang, X., Dougherty, E.R.: Binarization of microarray data on the basis of a mixture model. Mol. Cancer Ther. 2(7), 679–684 (2003)

    Google Scholar 

  30. Tomas, J., Cascuberta, F.: Binary feature classification for word disambiguation in statistical machine translation. In: Proceedings 2nd International Workshop on Pattern Recognition in Information Systems (2002)

    Google Scholar 

  31. Mitchell, T.: Generative and discriminative classifiers: naive bayes and logistic regression. In: Machine Learning. McGraw Hill (2010)

    Google Scholar 

  32. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: NIPS 14 (2002)

    Google Scholar 

  33. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Google Scholar 

  34. Sugiyama, M., Yamamoto, A.: A fast and flexible clustering algorithm using binary discretization. In: 11th IEEE International Conference on Data Mining, pp. 1213–1217 (2011)

    Google Scholar 

  35. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  36. Aly, M.: Survey on multiclass classification methods. Caltech Technical report (2005)

    Google Scholar 

  37. Rokach, L.: Pattern Classification Using Ensemble Methods. World Scientific, River Edge (2010)

    MATH  Google Scholar 

  38. Maimon, O., Rokach, L.: Improving supervised learning by feature decomposition. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 178–196. Springer, Heidelberg (2002). doi:10.1007/3-540-45758-5_12

    Chapter  Google Scholar 

  39. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sampling, S.: Approximation, relative-error matrix: column-row-based methods. In: Proceedings 14th Annual Symposium on Algorithms, pp. 304–314 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dymitr Ruta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ruta, D., Cen, L., Damiani, E. (2017). Summarization-Guided Greedy Optimization of Machine Learning Model. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2017. Lecture Notes in Computer Science(), vol 10358. Springer, Cham. https://doi.org/10.1007/978-3-319-62416-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62416-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62415-0

  • Online ISBN: 978-3-319-62416-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics