Skip to main content

Reconciling Intuitions and Conventional Knowledge: The Challenge of Teaching and Learning Mathematical Modelling

  • Chapter
  • First Online:
Mathematical Modelling and Applications

Abstract

In this chapter we present illustrative examples from school learners’ modelling efforts to highlight how knowledge of extra-mathematical contexts can influence students’ mathematical practices during various phases in the mathematical modelling cycle. We propose that future research may need to focus on how to constructively utilize students’ intuitions drawn from their personal and cultural backgrounds to advance their modelling cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blum, W. (1991). Applications and modelling in mathematics teaching – a review of arguments and instructional aspects. In M. Niss, W. Blum, & I. Huntley (Eds.), Mathematical modelling and applications (pp. 10–29). Horwood: Chichester.

    Google Scholar 

  • Blum, W., & Leiβ, D. (2007). How do students and teachers deal with mathematical modelling problems? The example “Filling up”. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Cai, J., Cirillo, M., Pelesko, L., Borromeo Ferri, R., Borba, M., Geiger, V., Stillman, G., English, L., Wake, G., Kaiser, G., & Kwon, O. (2014). Mathematical modelling in school education: Mathematical, cognitive, curricular, instructional and teacher education perspectives [research forum]. In P. Linljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 1, pp. 145–172). Vancouver: PME/PME-NA.

    Google Scholar 

  • Devlin, K. (2000). The language of mathematics: Making the invisible visible. New York: Henry Holt.

    Google Scholar 

  • Dixon, J. A., & Moore, C. F. (1996). The developmental role of intuitive principles in choosing mathematical strategies. Developmental Psychology, 32(2), 241–253.

    Article  Google Scholar 

  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.

    Article  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM Mathematics Education, 38(2), 143–162.

    Article  Google Scholar 

  • Greer, B., Verschaffel, L., & Mukhopadhyay, S. (2007). Modelling for life: Mathematics and students’ experience. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 89–98). New York: Springer.

    Chapter  Google Scholar 

  • Kehle, P. E., & Lester, F. K. (2003). A semiotic look at modeling behavior. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: A models and modelling perspective (pp. 97–122). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Manouchehri, A., & Zhang, P. (2015). Influences on high school students’ mathematical problem solving. Journal of Mathematics Education, 7(2), 67–94.

    Google Scholar 

  • Manouchehri, A., Czocher, J., Liu, Y., Zhang, P., Somayajulu, R., & Tague, J. (2014). Fostering mathematical competence through technology-enhanced interactive environments. In D. Polly (Ed.), Common core mathematics standards and implementing digital technologies (pp. 53–77). Hershey: Information Age Publishing.

    Google Scholar 

  • Mousoulides, N., Pittalis, M., Christou, C., & Sriraman, B. (2010). Tracing students’ modeling processes in school. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 119–129). New York: Springer.

    Chapter  Google Scholar 

  • National Council of Teachers of Mathematics. (2011). Cash or gas? Reston: NCTM.

    Google Scholar 

  • Niss, M. (1992). Applications and modelling in school mathematics – directions for future development. In I. Wirszup & R. Streit (Eds.), Development in school mathematics education around the world (pp. 346–361). Reston: NCTM.

    Google Scholar 

  • Schwarzkopf, R. (2007). Elementary modelling in mathematics lessons: The interplay between “real-world” knowledge and “mathematical structures”. In W. Blum, P. L. Galbraith, H. W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 209–216). New York: Springer.

    Chapter  Google Scholar 

  • Tague, J. (2015). Conceptions of rate of change: A cross analysis of modes of knowing and usage among middle, high school, and undergraduate students (Doctoral dissertation). Retrieved from https://etd.ohiolink.edu/.

  • Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28(5), 577–601.

    Article  Google Scholar 

  • Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zhang, P., & Manouchehri, A. (2016). From problem solving to learning theories. In M. Wood, E. Turner, M. Civil, & J. Eli (Eds.), Proceedings of the 38th Annual Meeting of the North American chapter of the International Group for the Psychology of Mathematics Education (p. 259). Tucson: The University of Arizona.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azita Manouchehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manouchehri, A., Lewis, S.T. (2017). Reconciling Intuitions and Conventional Knowledge: The Challenge of Teaching and Learning Mathematical Modelling. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-62968-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62968-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics